ﻻ يوجد ملخص باللغة العربية
We report detections of six high-redshift (1.8 < z < 6.4), optically luminous, radio-quiet quasars at 350 micron, using the SHARC II bolometer camera at the Caltech Submillimeter Observatory. Our observations double the number of high-redshift quasars for which 350 micron photometry is available. By combining the 350 micron measurements with observations at other submillimeter/millimeter wavelengths, for each source we have determined the temperature of the emitting dust (ranging from 40 to 60 K) and the far-infrared luminosity (0.6 to 2.2 x 10(13) Lo). The combined mean spectral energy distribution (SED) of all high-redshift quasars with two or more rest frame far-infrared photometric measurements is best fit with a greybody with temperature of 47 +- 3 K and a dust emissivity power-law spectral index of beta = 1.6 +- 0.1. This warm dust component is a good tracer of the starburst activity of the quasar host galaxy. The ratio of the far-infrared to radio luminosities of infrared luminous, radio-quiet high-redshift quasars is consistent with that found for local star-forming galaxies.
We report observations of a sample of high redshift sources (1.8<z<4.7), mainly radio-quiet quasars, at 350 microns using the SHARC bolometer camera at the Caltech Submillimeter Observatory. Nine sources were detected (>4-sigma) and upper limits were
We present observations of four z>= SDSS quasars at 350 micron with the SHARC-II bolometer camera on the Caltech Submillimeter Observatory. These are among the deepest observations that have been made by SHARC-II at 350 micron, and three quasars are
The detection of powerful near-infrared emission in high redshift (z>5) quasars demonstrates that very hot dust is present close to the active nucleus also in the very early universe. A number of high-redshift objects even show significant excess emi
We present detections of emission at 250 GHz (1.2 mm) from two high redshift QSOs from the Sloan Digital Sky Survey sample using the bolometer array at the IRAM 30m telescope. The sources are SDSSp 015048.83+004126.2 at z = 3.7, and SDSSp J033829.31+
We present a summary of data obtained with the 350 micron polarimeter, Hertz, at the Caltech Submillimeter Observatory. We give tabulated results and maps showing polarization vectors and flux contours. The summary includes over 4300 individual measu