ترغب بنشر مسار تعليمي؟ اضغط هنا

DQ white-dwarf stars with low C abundance: Possible progenitors

73   0   0.0 ( 0 )
 نشر من قبل Claudia Graciela Sc\\'occola
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The present paper focuses on the evolution of hydrogen-deficient white dwarfs with the aim of exploring the consequences of different initial envelope structures on the carbon abundances expected in helium-rich, carbon-contaminated DQ white dwarfs. In particular, the evolutionary link between the DQs with low detected carbon abundances and the PG1159, extreme horizontal branch, and helium-rich R Coronae Borealis (RCrB) stars is explored. We present full evolutionary calculations that take a self-consistent treatment of element diffusion into account as well as expectations for the outer layer chemical stratification of progenitor stars upon entering the white dwarf regime. We find that PG1159 stars cannot be related to any DQ white dwarfs with low C abundances. Instead, we suggest that the latter could constitute the progeny of the giant, helium-rich RCrB stars.



قيم البحث

اقرأ أيضاً

We report the discovery of a new class of hydrogen-deficient stars: white dwarfs with an atmosphere primarily composed of carbon, with little or no trace of hydrogen or helium. Our analysis shows that the atmospheric parameters found for these stars do not fit satisfactorily in any of the currently known theories of post-asymptotic giant branch (AGB) evolution, although these objects might be the cooler counter-part of the unique and extensively studied PG 1159 star H1504+65. These stars, together with H1504+65, might thus form a new evolutionary post-AGB sequence.
81 - M.Kilic 2002
We report new infrared spectroscopic observations of cool DQ white dwarfs by using Coolspec on the 2.7m Harlan-Smith Telescope. DQs have helium-rich atmospheres with traces of molecular carbon thought to be the result of convective dredge-up from the ir C/O interiors. Recent model calculations predict that oxygen should also be present in DQ atmospheres in detectable amounts. Our synthetic spectra calculations for He-rich white dwarfs with traces of C and O indicate that CO should be easily detected in the cool DQ atmospheres if present in the expected amounts. Determination of the oxygen abundance in the atmosphere will reveal the C/O ratio at the core/envelope boundary, constraining the important and uncertain ^{12}C(alpha,gamma)^{16}O reaction rate.
Recent studies of the atmospheres of carbon-rich (DQ) white dwarfs have demonstrated the existence of two different populations that are distinguished by the temperature range, but more importantly, by the extremely high masses of the hotter group. T he classical DQ below 10000 K are well understood as the result of dredge-up of carbon by the expanding helium convection zone. The high-mass group poses several problems regarding their origin and also an unexpected correlation of effective temperature with mass. We propose to study the envelopes of these objects to determine the total hydrogen and helium masses as possible clues to their evolution. We developed new codes for envelope integration and diffusive equilibrium that are adapted to the unusual chemical composition, which is not necessarily dominated by hydrogen and helium. Using the new results for the atmospheric parameters, in particular, the masses obtained using Gaia parallaxes, we confirm that the narrow sequence of carbon abundances with Teff in the cool classical DQ is indeed caused by an almost constant helium to total mass fraction, as found in earlier studies. This mass fraction is smaller than predicted by stellar evolution calculations. For the warm DQ above 10000 K, which are thought to originate from double white dwarf mergers, we obtain extremely low hydrogen and helium masses. The correlation of mass with Teff remains unexplained, but another possible correlation of helium layer masses with Teff as well as the gravitational redshifts casts doubt on the reality of both and suggests possible shortcomings of current models.
White dwarf stars are the final stage of most stars, born single or in multiple systems. We discuss the identification, magnetic fields, and mass distribution for white dwarfs detected from spectra obtained by the Sloan Digital Sky Survey up to Data Release 13 in 2016, which lead to the increase in the number of spectroscopically identified white dwarf stars from 5000 to 39000. This number includes only white dwarf stars with log g >= 6.5 stars, i.e., excluding the Extremely Low Mass white dwarfs, which are necessarily the byproduct of stellar interaction.
We report the discovery of a hot DQ white dwarf, NGC 2168:LAWDS 28, that is a likely member of the 150-Myr old cluster NGC 2168 (Messier 35). The spectrum of the white dwarf is dominated by CII features. The effective temperature is difficult to esti mate but likely > 20,000 K based on the temperatures of hot DQs with similar spectra. NGC2168:LAWDS 28 provides further evidence that hot DQs may be the ``missing high-mass helium-atmosphere white dwarfs. Based on published studies, we find that the DBA WD LP 475-242 is likely a member of the Hyades open cluster, as often assumed. These two white dwarfs are the entire sample of known He-atmosphere white dwarfs in open clusters with turnoff masses >2 solar masses. Based on the number of known cluster DA white dwarfs and a redetermination of the H-atmosphere:He-atmosphere ratio, commonly known as the DA:DB ratio, we re-examine the hypothesis that the H- to He-atmosphere ratio in open clusters is the same as the ratio in the field. Under this hypothesis, we calculate that five He-atmosphere WDs are expected to have been discovered, with a probability of finding fewer than three He-atmosphere white dwarfs of 0.08, or at the ~ 2-sigma level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا