ﻻ يوجد ملخص باللغة العربية
The dominating reionization source in the young universe has yet to be identified. Possible candidates include metal poor starburst dwarf galaxies of which the Blue Compact Galaxy Haro 11 may represent a local counterpart. Using the Far Ultraviolet Spectroscopic Explorer (FUSE) we obtained spectra of Haro 11 to search for leaking ionizing radiation. A weak signal shortwards of the Lyman break is identified as Lyman continuum (LyC) emission escaping from the ongoing starburst. From profile fitting to weak metal lines we derive column densities of the low ionization species. Adopting a metallicity typical of the H II regions of Haro 11, the corresponding H I column density is optically thick in the LyC. Therefore most of the LyC photons must escape through transparent holes in the interstellar medium. Using spectral evolutionary models we constrain the escape fraction of the produced LyC photons to between 4 and 10%, assuming a normal Salpeter IMF. We argue that in a hierarchical galaxy formation scenario, this allows for a substantial contribution to cosmic reionization by starburst dwarf galaxies at high redshifts.
Escaping Lyman continuum photons from galaxies likely reionized the intergalactic medium at redshifts $zgtrsim6$. However, the Lyman continuum is not directly observable at these redshifts and secondary indicators of Lyman continuum escape must be us
Simulations have indicated that most of the escaped Lyman continuum photons escape through a minority of solid angles with near complete transparency, with the remaining majority of the solid angles largely opaque, resulting in a very broad and skewe
Direct collapse black holes forming in pristine, atomically-cooling haloes at $z approx 10-20$ may act as the seeds of supermassive black holes (BH) at high redshifts. In order to create a massive BH seed, the host halo needs to be prevented from for
(Abridged) Lyman-alpha (Lya) is a dominant probe of the galaxy population at high-z. However, interpretation of data drawn from Lya alone hinges on the Lya escape fraction which, due to the complex radiative transport, may vary greatly. Here we map t
A large number of high-redshift galaxies have been discovered via their narrow-band Lya line or broad-band continuum colors in recent years. The nature of the escaping process of photons from these early galaxies is crucial to understanding galaxy ev