ترغب بنشر مسار تعليمي؟ اضغط هنا

Far-ultraviolet Observations of the North Ecliptic Pole with SPEAR

74   0   0.0 ( 0 )
 نشر من قبل Eric J. Korpela
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Eric J. Korpela




اسأل ChatGPT حول البحث

We present SPEAR/FIMS far-ultraviolet observations near the North Ecliptic Pole. This area, at b~30 degrees and with intermediate HI column, seems to be a fairly typical line of sight that is representative of general processes in the diffuse ISM. We detect a surprising number of emission lines of many elements at various ionization states representing gas phases from the warm neutral medium (WNM) to the hot ionized medium (HIM). We also detect fluorescence bands of H2, which may be due to the ubiquitous diffuse H2 previously observed in absorption.



قيم البحث

اقرأ أيضاً

127 - H. Nayyeri , N. Ghotbi , A. Cooray 2017
We present a photometric catalog for Spitzer Space Telescope warm mission observations of the North Ecliptic Pole (NEP; centered at $rm R.A.=18^h00^m00^s$, $rm Decl.=66^d33^m38^s.552$). The observations are conducted with IRAC in 3.6 $mu$m and 4.5 $m u$m bands over an area of 7.04 deg$^2$ reaching 1$sigma$ depths of 1.29 $mu$Jy and 0.79 $mu$Jy in the 3.6 $mu$m and 4.5 $mu$m bands respectively. The photometric catalog contains 380,858 sources with 3.6 $mu$m and 4.5 $mu$m band photometry over the full-depth NEP mosaic. Point source completeness simulations show that the catalog is 80% complete down to 19.7 AB. The accompanying catalog can be utilized in constraining the physical properties of extra-galactic objects, studying the AGN population, measuring the infrared colors of stellar objects, and studying the extra-galactic infrared background light.
We have used the ROSAT All-Sky Survey to detect a known supercluster at z=0.087 in the North Ecliptic Pole region. The X-ray data greatly improve our understanding of this superclusters characteristics, approximately doubling our knowledge of the str uctures spatial extent and tripling the cluster/group membership compared to the optical discovery data. The supercluster is a rich structure consisting of at least 21 galaxy clusters and groups, 12 AGN, 61 IRAS galaxies, and various other objects. A majority of these components were discovered with the X-ray data, but the supercluster is also robustly detected in optical, IR, and UV wavebands. Extending 129 x 102 x 67 (1/h50 Mpc)^3, the North Ecliptic Pole Supercluster has a flattened shape oriented nearly edge-on to our line-of-sight. Owing to the softness of the ROSAT X-ray passband and the deep exposure over a large solid angle, we have detected for the first time a significant population of X-ray emitting galaxy groups in a supercluster. These results demonstrate the effectiveness of X-ray observations with contiguous coverage for studying structure in the Universe.
We present far ultraviolet (FUV: 912 - 1750AA) spectral imaging observations recorded with the SPEAR satellite of the interstellar OVI (1032AA), CIV (1550AA), SiIV (1394AA), SiII* (1533AA) and AlII (1671AA) emission lines originating in a 60 x 30 deg ree rectangular region lying close to the North Galactic Pole. These data represent the first large area, moderate spatial resolution maps of the distribution of UV spectral-line emission originating the both the highly ionized medium (HIM) and the warm ionized medium (WIM) recorded at high galactic latitudes.
A detailed analysis of Herschel-PACS observations at the North Ecliptic Pole is presented. High quality maps, covering an area of 0.44 square degrees, are produced and then used to derive potential candidate source lists. A rigorous quality control p ipeline has been used to create final legacy catalogues in the PACS Green 100 micron and Red 160 micron bands, containing 1384 and 630 sources respectively. These catalogues reach to more than twice the depth of the current archival Herschel/PACS Point Source Catalogue, detecting 400 and 270 more sources in the short and long wavelength bands respectively. Galaxy source counts are constructed that extend down to flux densities of 6mJy and 19mJy (50% completeness) in the Green 100 micron and Red 160 micron bands respectively. These source counts are consistent with previously published PACS number counts in other fields across the sky. The source counts are then compared with a galaxy evolution model identifying a population of luminous infrared galaxies as responsible for the bulk of the galaxy evolution over the flux range (5-100mJy) spanned by the observed counts, contributing approximate fractions of 50% and 60% to the cosmic infrared background (CIRB) at 100 microns and 160 microns respectively.
We present the general properties of the far-ultraviolet (FUV; 1370-1720A) continuum background over most of the sky, obtained with the Spectroscopy of Plasma Evolution from Astrophysical Radiation instrument (SPEAR, also known as FIMS), flown aboard the STSAT-1 satellite mission. We find that the diffuse FUV continuum intensity is well correlated with N_{HI}, 100 $mu$m, and H-alpha intensities but anti-correlated with soft X-ray. The correlation of the diffuse background with the direct stellar flux is weaker than the correlation with other parameters. The continuum spectra are relatively flat. However, a weak softening of the FUV spectra toward some sight lines, mostly at high Galactic latitudes, is found not only in direct-stellar but also in diffuse background spectra. The diffuse background is relatively softer that the direct stellar spectrum. We also find that the diffuse FUV background averaged over the sky has about the same level as the direct-stellar radiation field in the statistical sense and a bit softer spectrum compared to direct stellar radiation. A map of the ratio of 1400-1510A to 1560-1660A shows that the sky is divided into roughly two parts. However, this map shows a lot of patchy structures on small scales. The spatial variation of the hardness ratio seems to be largely determined by the longitudinal distribution of spectral types of stars in the Galactic plane. A correlation of the hardness ratio with the FUV intensity at high intensities is found but an anti-correlation at low intensities. We also find evidence that the FUV intensity distribution is log-normal in nature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا