ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of a Cool Planet of 5.5 Earth Masses Through Gravitational Microlensing

54   0   0.0 ( 0 )
 نشر من قبل David Bennett
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the favoured core-accretion model of formation of planetary systems, solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars (the most common stars in our Galaxy), this model favours the formation of Earth-mass to Neptune-mass planets with orbital radii of 1 to 10 astronomical units (AU), which is consistent with the small number of gas giant planets known to orbit M-dwarf host stars. More than 170 extrasolar planets have been discovered with a wide range of masses and orbital periods, but planets of Neptunes mass or less have not hitherto been detected at separations of more than 0.15 AU from normal stars. Here we report the discovery of a 5.5 (+5.5/-2.7) M_earth planetary companion at a separation of 2.6 (+1.5/-0.6) AU from a 0.22 (+0.21/-0.11) M_solar M-dwarf star. (We propose to name it OGLE-2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.) The mass is lower than that of GJ876d, although the error bars overlap. Our detection suggests that such cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory.



قيم البحث

اقرأ أيضاً

The transient event labeled as TCP J05074264+2447555 recently discovered towards the Taurus region was quickly recognized to be an ongoing microlensing event on a source located at distance of only $700-800$ pc from Earth. Here, we show that observat ions with high sampling rate close to the time of maximum magnification revealed features that imply the presence of a binary lens system with very low mass ratio components. We present a complete description of the binary lens system which hosts an Earth-like planet with most likely mass of $9.2pm 6.6$ M$_{oplus}$. Furthermore, the source estimated location and detailed Monte Carlo simulations allowed us to classify the event as due to the closest lens system, being at a distance of $simeq 380$ pc and mass $simeq 0.25$ M$_{odot}$.
Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet s ystems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of ~0.71 and ~0.27 times the mass of Jupiter and orbital separations of ~2.3 and ~4.6 astronomical units orbiting a primary star of mass ~0.50 solar masses at a distance of ~1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.
232 - J.P. Beaulieu , E. Kerins , S. Mao 2008
Thirteen exo-planets have been discovered using the gravitational microlensing technique (out of which 7 have been published). These planets already demonstrate that super-Earths (with mass up to ~10 Earth masses) beyond the snow line are common and multiple planet systems are not rare. In this White Paper we introduce the basic concepts of the gravitational microlensing technique, summarise the current mode of discovery and outline future steps towards a complete census of planets including Earth-mass planets. In the near-term (over the next 5 years) we advocate a strategy of automated follow-up with existing and upgraded telescopes which will significantly increase the current planet detection efficiency. In the medium 5-10 year term, we envision an international network of wide-field 2m class telescopes to discover Earth-mass and free-floating exo-planets. In the long (10-15 year) term, we strongly advocate a space microlensing telescope which, when combined with Kepler, will provide a complete census of planets down to Earth mass at almost all separations. Such a survey could be undertaken as a science programme on Euclid, a dark energy probe with a wide-field imager which has been proposed to ESAs Cosmic Vision Programme.
We show that Earth mass planets orbiting stars in the Galactic disk and bulge can be detected by monitoring microlensed stars in the Galactic bulge. The star and its planet act as a binary lens which generates a lightcurve which can differ substantia lly from the lightcurve due only to the star itself. We show that the planetary signal remains detectable for planetary masses as small as an Earth mass when realistic source star sizes are included in the lightcurve calculation. These planets are detectable if they reside in the ``lensing zone which is centered between 1 and 4 AU from the lensing star and spans about a factor of 2 in distance. If we require a minimum deviation of 4% from the standard point-lens microlensing lightcurve, then we find that more than 2% of all $mearth$ planets and 10% of all $10mearth$ in the lensing zone can be detected. If a third of all lenses have no planets, a third have $1mearth$ planets and the remaining third have $10mearth$ planets then we estimate that an aggressive ground based microlensing planet search program could find one earth mass planet and half a dozen $10mearth$ planets per year.
We present the analysis of the planetary microlensing event OGLE-2014-BLG-1760, which shows a strong light curve signal due to the presence of a Jupiter mass-ratio planet. One unusual feature of this event is that the source star is quite blue, with $V-I = 1.48pm 0.08$. This is marginally consistent with source star in the Galactic bulge, but it could possibly indicate a young source star in the far side of the disk. Assuming a bulge source, we perform a Bayesian analysis assuming a standard Galactic model, and this indicates that the planetary system resides in or near the Galactic bulge at $D_L = 6.9 pm 1.1 $ kpc. It also indicates a host star mass of $M_* = 0.51 pm 0.44 M_odot$, a planet mass of $m_p = 180 pm 110 M_oplus$, and a projected star-planet separation of $a_perp = 1.7pm 0.3,$AU. The lens-source relative proper motion is $mu_{rm rel} = 6.5pm 1.1$ mas/yr. The lens (and stellar host star) is predicted to be very faint, so it is most likely that it can detected only when the lens and source stars are partially resolved. Due to the relatively high relative proper motion, the lens and source will be resolved to about $sim46,$mas in 6-8 years after the peak magnification. So, by 2020 - 2022, we can hope to detect the lens star with deep, high resolution images.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا