ﻻ يوجد ملخص باللغة العربية
In the favoured core-accretion model of formation of planetary systems, solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars (the most common stars in our Galaxy), this model favours the formation of Earth-mass to Neptune-mass planets with orbital radii of 1 to 10 astronomical units (AU), which is consistent with the small number of gas giant planets known to orbit M-dwarf host stars. More than 170 extrasolar planets have been discovered with a wide range of masses and orbital periods, but planets of Neptunes mass or less have not hitherto been detected at separations of more than 0.15 AU from normal stars. Here we report the discovery of a 5.5 (+5.5/-2.7) M_earth planetary companion at a separation of 2.6 (+1.5/-0.6) AU from a 0.22 (+0.21/-0.11) M_solar M-dwarf star. (We propose to name it OGLE-2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.) The mass is lower than that of GJ876d, although the error bars overlap. Our detection suggests that such cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory.
The transient event labeled as TCP J05074264+2447555 recently discovered towards the Taurus region was quickly recognized to be an ongoing microlensing event on a source located at distance of only $700-800$ pc from Earth. Here, we show that observat
Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet s
Thirteen exo-planets have been discovered using the gravitational microlensing technique (out of which 7 have been published). These planets already demonstrate that super-Earths (with mass up to ~10 Earth masses) beyond the snow line are common and
We show that Earth mass planets orbiting stars in the Galactic disk and bulge can be detected by monitoring microlensed stars in the Galactic bulge. The star and its planet act as a binary lens which generates a lightcurve which can differ substantia
We present the analysis of the planetary microlensing event OGLE-2014-BLG-1760, which shows a strong light curve signal due to the presence of a Jupiter mass-ratio planet. One unusual feature of this event is that the source star is quite blue, with