ﻻ يوجد ملخص باللغة العربية
A model to describe cosmic ray spectra in the energy region from 10 GeV to 100 PeV is suggested based on the assumption that Galactic cosmic ray flux is a mixture of fluxes accelerated by shocks from nova and supernova of different types. We analyze recent experimental data on cosmic ray spectra obtained in direct measurements above the atmosphere and data obtained with ground Extensive Air Shower arrays. The model of the three classes of cosmic ray sources is consistent with direct experimental data on cosmic ray elemental spectra and gives a smooth transition from the all particle spectrum measured in the direct experiments to the all particle spectrum measured with EAS.
DArk Matter Particle Explorer (DAMPE) is a general purpose high energy cosmic ray and gamma ray observatory, aiming to detect high energy electrons and gammas in the energy range 5 GeV to 10 TeV and hundreds of TeV for nuclei. This paper provides a m
We propose a model where a supernova explodes in some vicinity of our solar system (some tens of parsecs) in the recent past (some tens of thousands years) with the energy release in cosmic rays of order of $ 10 ^ {51} $ erg. The flux from this super
The precise measurement of the spectrum of protons, the most abundant component of the cosmic radiation, is necessary to understand the source and acceleration of cosmic rays in the Milky Way. This work reports the measurement of the cosmic ray proto
Blazars are potential candidates of cosmic-ray acceleration up to ultrahigh energies ($Egtrsim10^{18}$ eV). For an efficient cosmic-ray injection from blazars, $pgamma$ collisions with the extragalactic background light (EBL) and cosmic microwave bac
We report constraints on the sources of ultra-high-energy cosmic ray (UHECR) above $10^{9}$ GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high energy neutrino-induced events which have deposited ener