ترغب بنشر مسار تعليمي؟ اضغط هنا

The environmental dependence of galaxy clustering in the Sloan Digital Sky Survey

308   0   0.0 ( 0 )
 نشر من قبل Ummi Abbas
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ummi Abbas




اسأل ChatGPT حول البحث

A generic prediction of hierarchical clustering models is that the mass function of dark haloes in dense regions in the Universe should be top-heavy. We provide a novel test of this prediction using a sample of galaxies drawn from the Sloan Digital Sky Survey. To perform the test, we compare measurements of galaxy clustering in dense and underdense regions. We find that galaxies in dense regions cluster significantly more strongly than those in less dense regions. This is true over the entire 0.1--30 Mpc pair separation range for which we can make accurate measurements. We make similar measurements in realistic mock catalogs in which the only environmental effects are those which arise from the predicted correlation between halo mass and environment. We also provide an analytic halo-model based calculation of the effect. Both the mock catalogs and the analytic calculation provide rather good descriptions of the SDSS measurements. Thus, our results provide strong support for hierarchical models. They suggest that, unless care is taken to study galaxies at fixed mass, correlations between galaxy properties and the surrounding environment are almost entirely due to more fundamental correlations between galaxy properties and host halo mass, and between halo mass and environment.



قيم البحث

اقرأ أيضاً

The influence of the Cosmic Web on galaxy formation and evolution is of great observational and theoretical interest. We investigate whether the Cosmic Web leaves an imprint in the spatial clustering of galaxies in the Sloan Digital Sky Survey (SDSS) , using the group catalog of Yang et al. and tidal field estimates at $sim2h^{-1}$Mpc scales from the Mass-Tides-Velocity data set of Wang et al. We use the $textit{tidal anisotropy}$ $alpha$ (Paranjape et al.) to characterise the tidal environment of groups, and measure the redshift-space 2-point correlation function (2pcf) of group positions and the luminosity- and colour-dependent clustering of group galaxies using samples segregated by $alpha$. We find that all the 2pcf measurements depend strongly on $alpha$, with factors of $sim20$ between the large-scale 2pcf of objects in the most and least isotropic environments. To test whether these strong trends imply `beyond halo mass effects for galaxy evolution, we compare our results with corresponding 2pcf measurements in mock catalogs constructed using a halo occupation distribution that only uses halo mass as an input. We find that this prescription qualitatively reproduces $textit{all}$ observed trends, and also quantitatively matches many of the observed results. Although there are some statistically significant differences between our `halo mass only mocks and the data -- in the most and least isotropic environments -- which deserve further investigation, our results suggest that if the tidal environment induces additional effects on galaxy properties other than those inherited from their host halos, then these must be weak.
105 - Nicholas M Ball 2005
Bivariate luminosity functions (LFs) are computed for galaxies in the New York Value-Added Galaxy Catalogue, based on the Sloan Digital Sky Survey Data Release 4. The galaxy properties investigated are the morphological type, inverse concentration in dex, Sersic index, absolute effective surface brightness, reference frame colours, absolute radius, eClass spectral type, stellar mass and galaxy environment. The morphological sample is flux-limited to galaxies with r < 15.9 and consists of 37,047 classifications to an RMS accuracy of +/- half a class in the sequence E, S0, Sa, Sb, Sc, Sd, Im. These were assigned by an artificial neural network, based on a training set of 645 eyeball classifications. The other samples use r < 17.77 with a median redshift of z ~ 0.08, and a limiting redshift of z < 0.15 to minimize the effects of evolution. Other cuts, for example in axis ratio, are made to minimize biases. A wealth of detail is seen, with clear variations between the LFs according to absolute magnitude and the second parameter. They are consistent with an early type, bright, concentrated, red population and a late type, faint, less concentrated, blue, star forming population. This bimodality suggests two major underlying physical processes, which in agreement with previous authors we hypothesize to be merger and accretion, associated with the properties of bulges and discs respectively. The bivariate luminosity-surface brightness distribution is fit with the Choloniewski function (a Schechter function in absolute magnitude and Gaussian in surface brightness). The fit is found to be poor, as might be expected if there are two underlying processes.
Previous studies have shown the filamentary structures in the cosmic web influence the alignments of nearby galaxies. We study this effect in the LOWZ sample of the Sloan Digital Sky Survey using the Cosmic Web Reconstruction filament catalogue. We f ind that LOWZ galaxies exhibit a small but statistically significant alignment in the direction parallel to the orientation of nearby filaments. This effect is detectable even in the absence of nearby galaxy clusters, which suggests it is an effect from the matter distribution in the filament. A nonparametric regression model suggests that the alignment effect with filaments extends over separations of 30-40 Mpc. We find that galaxies that are bright and early-forming align more strongly with the directions of nearby filaments than those that are faint and late-forming; however, trends with stellar mass are less statistically significant, within the narrow range of stellar mass of this sample.
202 - Nicholas M. Ball 2006
We use the Fourth Data Release of the Sloan Digital Sky Survey to investigate the relation between galaxy rest frame u-r colour, morphology, as described by the concentration and Sersic indices, and environmental density, for a sample of 79,553 galax ies at z < ~0.1. We split the samples according to density and luminosity and recover the expected bimodal distribution in the colour-morphology plane, shown especially clearly by this subsampling. We quantify the bimodality by a sum of two Gaussians on the colour and morphology axes and show that, for the red/early-type population both colour and morphology do not change significantly as a function of density. For the blue/late-type population, with increasing density the colour becomes redder but the morphology again does not change significantly. Both populations become monotonically redder and of earlier type with increasing luminosity. There is no significant qualitative difference between the behaviour of the two morphological measures. We supplement the morphological sample with 13,655 galaxies assigned Hubble types by an artificial neural network. We find, however, that the resulting distribution is less well described by two Gaussians. Therefore, there are either more than two significant morphological populations, physical processes not seen in colour space, or the Hubble type, particularly the different subtypes of spirals Sa-Sd, has an irreducible fuzziness when related to environmental density. For each of the three measures of morphology, on removing the density relation due to it, we recover a strong residual relation in colour. However, on similarly removing the colour-density relation there is no evidence for a residual relation due to morphology. [Abridged]
We present the 3D real space clustering power spectrum of a sample of ~600,000 luminous red galaxies (LRGs) measured by the Sloan Digital Sky Survey (SDSS), using photometric redshifts. This sample of galaxies ranges from redshift z=0.2 to 0.6 over 3 ,528 deg^2 of the sky, probing a volume of 1.5 (Gpc/h)^3, making it the largest volume ever used for galaxy clustering measurements. We measure the angular clustering power spectrum in eight redshift slices and combine these into a high precision 3D real space power spectrum from k=0.005 (h/Mpc) to k=1 (h/Mpc). We detect power on gigaparsec scales, beyond the turnover in the matter power spectrum, on scales significantly larger than those accessible to current spectroscopic redshift surveys. We also find evidence for baryonic oscillations, both in the power spectrum, as well as in fits to the baryon density, at a 2.5 sigma confidence level. The statistical power of these data to constrain cosmology is ~1.7 times better than previous clustering analyses. Varying the matter density and baryon fraction, we find Omega_M = 0.30 pm 0.03, and Omega_b/Omega_M = 0.18 pm 0.04, The detection of baryonic oscillations also allows us to measure the comoving distance to z=0.5; we find a best fit distance of 1.73 pm 0.12 Gpc, corresponding to a 6.5% error on the distance. These results demonstrate the ability to make precise clustering measurements with photometric surveys (abridged).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا