ترغب بنشر مسار تعليمي؟ اضغط هنا

Can gas dynamics in centres of galaxies reveal orbiting massive black holes?

52   0   0.0 ( 0 )
 نشر من قبل Witold Maciejewski
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

If supermassive black holes in centres of galaxies form by merging of black-hole remnants of massive Population III stars, then there should be a few black holes of mass one or two orders of magnitude smaller than that of the central ones, orbiting around the centre of a typical galaxy. These black holes constitute a weak perturbation in the gravitational potential, which can generate wave phenomena in gas within a disc close to the centre of the galaxy. Here we show that a single orbiting black hole generates a three-arm spiral pattern in the central gaseous disc. The density excess in the spiral arms in the disc reaches values of 3-12% when the orbiting black hole is about ten times less massive than the central black hole. Therefore the observed density pattern in gas can be used as a signature in detecting the most massive orbiting black holes.


قيم البحث

اقرأ أيضاً

The dynamics of massive black holes (BHs) in galaxy mergers is a rich field of research that has seen much progress in recent years. In this contribution we briefly review the processes describing the journey of BHs during mergers, from the cosmic co ntext all the way to when BHs coalesce. If two galaxies each hosting a central BH merge, the BHs would be dragged towards the center of the newly formed galaxy. If/when the holes get sufficiently close, they coalesce via the emission of gravitational waves. How often two BHs are involved in galaxy mergers depends crucially on how many galaxies host BHs and on the galaxy merger history. It is therefore necessary to start with full cosmological models including BH physics and a careful dynamical treatment. After galaxies have merged, however, the BHs still have a long journey until they touch and coalesce. Their dynamical evolution is radically different in gas-rich and gas-poor galaxies, leading to a sort of dichotomy between high-redshift and low-redshift galaxies, and late-type and early-type, typically more massive galaxies.
We explore how the co-evolution of massive black holes (MBHs) and galaxies is affected by environmental effects, addressing in particular MBHs hosted in the central galaxies of clusters (we will refer to these galaxies in general as CGs). Recently th e sample of MBHs in CGs with dynamically measured masses has increased, and it has been suggested that these MBH masses (M_BH) deviate from the expected correlations with velocity dispersion (sigma) and mass of the bulge (M_bulge) of the host galaxy: MBHs in CGs appear to be `over-massive. This discrepancy is more pronounced when considering the M_BH-sigma relation than the M_BH-M_bulge one. We show that this behavior stems from a combination of two natural factors, (i) that CGs experience more mergers involving spheroidal galaxies and their MBHs, and (ii) that such mergers are preferentially gas-poor. We use a combination of analytical and semi-analytical models to investigate the MBH-galaxy co-evolution in different environments and find that the combination of these two factors explains the trends observed in current data-sets.
422 - B. Devecchi , E. Rasia , M. Dotti 2008
Anisotropic gravitational radiation from a coalescing black hole binary is known to impart recoil velocities of up to ~1000 km/s to the remnant black hole. In this context, we study the motion of a recoiling black hole inside a galaxy modelled as an Hernquist sphere, and the signature that the hole imprints on the hot gas, using N-body/SPH simulations. Ejection of the black hole results in a sudden expansion of the gas ending with the formation of a gaseous core, similarly to what is seen for the stars. A cometary tail of particles bound to the black hole is initially released along its trail. As the black hole moves on a return orbit, a nearly spherical swarm of hot gaseous particles forms at every apocentre: this feature can live up to ~ 100 Myr. If the recoil velocity exceeds the sound speed initially, the black hole shocks the gas in the form of a Mach cone in density near each super-sonic pericentric passage. We find that the X-ray fingerprint of a recoiling black hole can be detected in Chandra X-ray maps out to a distance of Virgo. For exceptionally massive black holes the Mach cone and the wakes could be observed out to a few hundred of Mpc. Detection of the Mach cone is found to become of twofold importance: i) as a probe of high-velocity recoils and ii) as an assessment of the scatter of the mass-sigma relation at large black hole masses.
51 - Mimi Zhang 2009
A gap in phase-space, the loss cone (LC), is opened up by a supermassive black hole (MBH) as it disrupts or accretes stars in a galactic centre. If a star enters the LC then, depending on its properties, its interaction with the MBH will either gener ate a luminous electromagnetic flare or give rise to gravitational radiation, both of which are expected to have directly observable consequences. A thorough understanding of loss-cone refilling mechanisms is important for the prediction of astrophysical quantities, such as rates of tidal disrupting main-sequence stars, rates of capturing compact stellar remnants and timescales of merging binary MBHs. In this thesis, we use N-body simulations to investigate how noise from accreted satellites and other substructures in a galaxys halo can affect the LC refilling rate. Any N-body model suffers from Poisson noise which is similar to, but much stronger than, the two-body diffusion occurring in real galaxies. To lessen this spurious Poisson noise, we apply the idea of importance sampling to develop a new scheme for constructing N-body realizations of a galaxy model, in which interesting regions of phase-space are sampled by many low-mass particles. We use multimass N-body models of galaxies with centrally-embedded MBHs to study the effects of satellite flybys on LC refilling rates. We find that although the flux of stars into the initially emptied LC is enhanced, but the fuelling rate averaged over the entire subhalos is increased by only a factor 3 over the rate one expects from the Poisson noise due the discreteness of the stellar distribution.
The population of massive black holes (MBHs) in dwarf galaxies is elusive, but fundamentally important to understand the coevolution of black holes with their hosts and the formation of the first collapsed objects in the Universe. While some progress was made in determining the X-ray detected fraction of MBHs in dwarfs, with typical values ranging from $0%$ to $6%$, their overall active fraction, ${cal A}$, is still largely unconstrained. Here, we develop a theoretical model to predict the multiwavelength active fraction of MBHs in dwarf galaxies starting from first principles and based on the physical properties of the host, namely, its stellar mass and angular momentum content. We find multiwavelength active fractions for MBHs, accreting at typically low rates, ranging from $5%$ to $22%$, and increasing with the stellar mass of the host as ${cal A} sim(log_{10}M_{star})^{4.5}$. If dwarfs are characterized by low-metallicity environments, the active fraction may reach $sim 30%$ for the most massive hosts. For galaxies with stellar mass in the range $10^7<M_{star} [M_{odot}]<10^{10}$, our predictions are in agreement with occupation fractions derived from simulations and semi-analytical models. Additionally, we provide a fitting formula to predict the probability of finding an active MBH in a dwarf galaxy from observationally derived data. This model will be instrumental to guide future observational efforts to find MBHs in dwarfs. The James Webb Space Telescope, in particular, will play a crucial role in detecting MBHs in dwarfs, possibly uncovering active fractions $sim 3$ times larger than current X-ray surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا