ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of the Color-Magnitude Relation in High-Redshift Clusters: Blue Early-Type Galaxies and Red Pairs in RDCS J0910+5422

404   0   0.0 ( 0 )
 نشر من قبل Simona Mei
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The color-magnitude relation has been determined for the RDCS J0910+5422 cluster of galaxies at redshift z = 1.106. Cluster members were selected from HST ACS images, combined with ground--based near--IR imaging and optical spectroscopy. The observed early--type color--magnitude relation (CMR) in (i_775 -z_850) versus z_850 shows intrinsic scatters in color of 0.042 +/- 0.010 mag and 0.044 +/- 0.020 mag for ellipticals and S0s, respectively. From the scatter about the CMR, a mean luminosity--weighted age t > 3.3 Gyr (z > 3) is derived for the elliptical galaxies. Strikingly, the S0 galaxies in RDCS J0910+5422 are systematically bluer in (i_775 - z_850) by 0.07 +/- 0.02 mag, with respect to the ellipticals. The ellipticity distribution as a function of color indicates that the face-on S0s in this particular cluster have likely been classified as elliptical. Thus, if anything, the offset in color between the elliptical and S0 populations may be even more significant. The color offset between S0 and E corresponds to an age difference of ~1 Gyr, for a single-burst solar metallicity model. A solar metallicity model with an exponential decay in star formation will reproduce the offset for an age of 3.5 Gyr, i.e. the S0s have evolved gradually from star forming progenitors. The early--type population in this cluster appears to be still forming. The blue early-type disk galaxies in RDCS J0910+5422 likely represent the direct progenitors of the more evolved S0s that follow the same red sequence as ellipticals in other clusters. Thirteen red galaxy pairs are observed and the galaxies associated in pairs constitute ~40% of the CMR galaxies in this cluster.



قيم البحث

اقرأ أيضاً

Color-magnitude relations have been derived in the clusters RX J0849+4452 and RX J0848+4453 at z~1.26. The color-magnitude relation was determined from Advanced Camera for Surveys imaging in the WFC F775W (i_775) and F850LP (z_850) filters combined w ith ground-based spectroscopy. Early-type cluster candidates have been identified according to the Postman et al. morphological classification. In both clusters the bright red early-type population defines a tight color-magnitude relation very similar in color, although the two clusters present different X-ray luminosities and shapes, with RX J0849+4452 being three times more X-ray luminous and more compact, and having a temperature two times higher. The elliptical galaxy color-magnitude relations (CMR) in RX J0849+4452 and RX J0848+4453 show an intrinsic (i_775-z_850) color scatter of 0.026 +/- 0.012 mag and 0.024 +/- 0.015 mag, respectively, within 2 arcminutes (~1Mpc at z=1.26) from the cluster X-ray emission centers. Simple modeling of the scatters using stellar population models from Bruzual and Charlot, gives a mean luminosity-weighted age t > 2.5 Gyr (z_f > 2.75). S0 galaxies follow the elliptical CMR; they show larger scatters about the CMR. The intrinsic scatter decreases and the CMR slopes are steeper at smaller radii, within both clusters. We conclude that old stellar populations in cluster elliptical galaxies are already in place at z=1.26, both in the more evolved cluster RX J0849+4452, and in its less evolved companion RX J0848+4453. Even at a lookback time of 9 Gyr, in the early merging and buildup of massive clusters, the bulk of the stellar content of the bright elliptical galaxy population was in place - apparently formed some 2.5~Gyr earlier at z~3
We present a study of the color evolution of elliptical and S0 galaxies in six clusters of galaxies inside the redshift range 0.78 < z < 1.27. For each cluster, we used imaging from the Hubble Space Telescope to determine morphological types by both an automated technique and from visual inspection. We performed simulations to determine the accuracy of the automated classifications and found a success rate of ~75% at m(L*) or brighter magnitudes for most of our HST imaging data with the fraction of late--type galaxies identified as early--type galaxies to be ~10% at m(L*) to ~20% at m(L*)+2. From ground based optical and near-infrared imaging, we measured the zero-point and scatter in the color--magnitude relation of the early-type populations, which when combined with Stanford et al. (1998), yields a sample of cluster early--type galaxies that span a lookback time of 9 gigayears from the present. We see the colors of the early--type cluster members become bluer with increasing redshift. We fit a set of models to the change in the color as a function of redshift with the best fitting values ranging from a formation redshift of 3^+2_-1 to 5_-3. The large scatter in resulting formation epochs, which depends on the details of the models used, implies that we can conclude that the oldest stars in the elliptical galaxies appear to have formed at redshifts of z>3. We find possible evolution in the scatter of the colors, with some high redshift clusters showing scatter as small as the Coma cluster but others showing much larger scatter. Those clusters with a small scatter imply either a formation redshift of at least z ~ 3 or a smaller spread in the range of formation redshifts at lower redshifts, assuming a Gaussian distribution of star-formation around the mean epoch.
In this letter we present a study of the color magnitude relation of 468 early-type galaxies in the Virgo Cluster with Sloan Digital Sky Survey imaging data. The analysis of our homogeneous, model-independent data set reveals that, in all colors (u-g , g-r, g-i, i-z) similarly, giant and dwarf early-type galaxies follow a continuous color magnitude relation (CMR) that is best described by an S-shape. The magnitude range and quality of our data allows us to clearly confirm that the CMR in Virgo is not linear. Additionally, we analyze the scatter about the CMR and find that it increases in the intermediate-luminosity regime. Nevertheless, despite this observational distinction, we conclude from the similarly shaped CMR of semi-analytic model predictions that dwarfs and giants could be of the same origin.
354 - Marco Scodeggio 2001
The traditional use of fixed apertures in determining the well known color-magnitude (CM) relation of early type galaxies, coupled with the presence of radial color gradients within these systems, introduces a bias in the CM relation itself. The effe ct of this bias is studied here deriving a CM relation which is based on color measurements carried out homogeneously within an aperture of radius equal to that of the galaxy effective radius. A sample of 48 giant early-type galaxies in the Coma cluster, with CCD observations in the U- and V-band, is used for this derivation. It is found that internal radial color gradients in early-type galaxies cannot be neglected when discussing the colors of these systems, and that the CM relation derived using color measurements within the effective radius is significantly flatter than those based on fixed-aperture color measurements. With the presently available data it is impossible to determine whether the relation is completely flat, or whether a small correlation is still present between galaxy color and luminosity.
58 - Omar Lopez-Cruz 2004
We present the analysis of the color-magnitude relation (CMR) for a sample of 57 X-ray detected Abell clusters within the redshift interval 0.02 <= z <= 0.18. We use the B-R vs R color-magnitude plane to establish that the CMR is present in all our l ow-redshift clusters and can be parameterized by a single straight line.We find that the CMRs for this large cluster sample of different richness and cluster types are consistent with having universal properties. The k-corrected color of the individual CMRs in the sample at a fixed absolute magnitude have a small intrinsic dispersion of ~0.05 mag. The slope of the CMR is consistent with being the same for all clusters, with the variations entirely accountable by filter band shifting effects. We determine the mean of the dispersion of the 57 CMRs to be 0.074 mag, with a small rms scatter of 0.026 mag. However, a modest amount of the dispersion arises from photometric measurement errors and possible background cluster superpositions; and the derived mean dispersion is an upper limit. Models which explain the CMR in terms of metallicity and passive evolution can naturally reproduce the observed behavior of the CMR in this paper. The observed properties of the CMR are consistent with models in which the last episode of significant star formation in cluster early-type galaxies occurred significantly more than ~3 Gyr ago, and that the core set of early-type galaxies in clusters were formed more than 7 Gyr ago. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا