ترغب بنشر مسار تعليمي؟ اضغط هنا

Star Cluster Evolution with Primordial Binaries

161   0   0.0 ( 0 )
 نشر من قبل John M. Fregeau
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations and theoretical work suggest that globular clusters may be born with initially very large binary fractions. We present first results from our newly modified Monte-Carlo cluster evolution code, which treats binary interactions exactly via direct N-body integration. It is shown that binary scattering interactions generate significantly less energy than predicted by the recipes that have been used in the past to model them in approximate cluster evolution methods. The new result that the cores of globular clusters in the long-lived binary-burning phase are smaller than previously predicted weakens the agreement with observations, thus implying that more than simply stellar dynamics is at work in shaping the globular clusters we observe today.

قيم البحث

اقرأ أيضاً

103 - Vaclav Pavlik 2020
Observations of young star-forming regions suggest that star clusters are born completely mass segregated. These initial conditions are, however, gradually lost as the star cluster evolves dynamically. For star clusters with single stars only and a c anonical initial mass function, it has been suggested that traces of these initial conditions vanish at a time $tau_mathrm{v}$ between 3 and $3.5,t_mathrm{rh}$ (initial half-mass relaxation times). Since a significant fraction of stars are observed in binary systems and it is widely accepted that most stars are born in binary systems, we aim to investigate what role a primordial binary population (even up to $100,%$ binaries) plays in the loss of primordial mass segregation of young star clusters. We used numerical $N$-body models similar in size to the Orion Nebula Cluster (ONC) -- a representative of young open clusters -- integrated over several relaxation times to draw conclusions on the evolution of its mass segregation. We also compared our models to the observed ONC. We found that $tau_mathrm{v}$ depends on the binary star fraction and the distribution of initial binary parameters that include a semi-major axis, eccentricity, and mass ratio. For instance, in the models with $50,%$ binaries, we find $tau_mathrm{v} = (2.7 pm 0.8),t_mathrm{rh}$, while for $100,%$ binary fraction, we find a lower value $tau_mathrm{v} = (2.1 pm 0.6),t_mathrm{rh}$. We also conclude that the initially completely mass segregated clusters, even with binaries, are more compatible with the present-day ONC than the non-segregated ones.
183 - H. Mathis 2003
Using cosmological simulations, we make predictions for the distribution of clusters in a plausible non-gaussian model where primordial voids nucleated during inflation act together with scale-invariant adiabatic gaussian fluctuations as seeds for th e formation of large-scale structure. This model agrees with most recent observations of the anisotropies of the cosmic microwave background (CMB) and can account for the excess of power measured on cluster scales by the Cosmic Background Imager (CBI), the large empty regions apparent in nearby galaxy redshift surveys and the number of giant arcs measured in deep cluster lensing surveys. We show that the z=0 cluster mass function differs from predictions for a standard LCDM cosmology with the same sigma_8. Moreover, as massive clusters also form much earlier in the void scenario, we show that integrated number counts of SZ sources and simple statistics of strong lensing can easily falsify this model.
The fraction of stars in binary systems within star clusters is important for their evolution, but what proportion of binaries form by dynamical processes after initial stellar accretion remains unknown. In previous work, we showed that dynamical int eractions alone produced too few low-mass binaries compared to observations. We therefore implement an initial population of binaries in the coupled MHD and direct N-body star cluster formation code Torch. We compare simulations with, and without, initial binary populations and follow the dynamical evolution of the binary population in both sets of simulations, finding that both dynamical formation and destruction of binaries take place. Even in the first few million years of star formation, we find that an initial population of binaries is needed at all masses to reproduce observed binary fractions for binaries with mass ratios above the $q geq 0.1$ detection limit. Our simulations also indicate that dynamical interactions in the presence of gas during cluster formation modify the initial distributions towards binaries with smaller primary masses, larger mass ratios, smaller semi-major axes and larger eccentricities. Systems formed dynamically do not have the same properties as the initial systems, and systems formed dynamically in the presence of an initial population of binaries differ from those formed in simulations with single stars only. Dynamical interactions during the earliest stages of star cluster formation are important for determining the properties of binary star systems.
Evolution of a cluster of primordial black holes in the two-body relaxation approximation based on the Fokker-Planck equation is discussed. In our calculation, we consider the self-gravitating cluster with a wide range of black holes masses from $10^ {-4} M_{odot}$ up to $100 M_{odot}$ and the total mass $10^5 M_{odot}$. Moreover, we included a massive black hole in the cluster center which determines the evolution rate of the density profile in its vicinity.
We study the evolution of Super Star Cluster (SSC) winds driven by stellar winds and supernova (SN) explosions. Time-dependent rates at which mass and energy are deposited into the cluster volume, as well as the time-dependent chemical composition of the re-inserted gas, are obtained from the population synthesis code Starburst99. These results are used as input for a semi-analytic code which determines the hydrodynamic properties of the cluster wind as a function of cluster age. Two types of winds are detected in the calculations. For the quasi-adiabatic solution, all of the inserted gas leaves the cluster in the form of a stationary wind. For the bimodal solution, some of the inserted gas becomes thermally unstable and forms dense warm clumps which accumulate inside the cluster. We calculate the evolution of the wind velocity and energy flux and integrate the amount of accumulated mass for clusters of different mass, radius and initial metallicity. We consider also conditions with low heating efficiency of the re-inserted gas or mass loading of the hot thermalized plasma with the gas left over from star formation. We find that the bimodal regime and the related mass accumulation occur if at least one of the two conditions above is fulfilled.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا