ترغب بنشر مسار تعليمي؟ اضغط هنا

Marked correlations in galaxy formation models

51   0   0.0 ( 0 )
 نشر من قبل Ravi K. Sheth
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The two-point correlation function has been the standard statistic for quantifying how galaxies are clustered. The statistic uses the positions of galaxies, but not their properties. Clustering as a function of galaxy property, be it type, luminosity, color, etc., is usually studied by analysing a subset of the full population, the galaxies in the subset chosen because they have a similar range of properties. We explore an alternative technique---marked correlations---in which one weights galaxies by some property or `mark when measuring clustering statistics. Marked correlations are particularly well-suited to quantifying how the properties of galaxies correlate with their environment. Therefore, measurements of marked statistics, with luminosity, stellar mass, color, star-formation rate, etc. as the mark, permit sensitive tests of galaxy formation models. We make measurements of such marked statistics in semi-analytic galaxy formation models to illustrate their utility. These measurements show that close pairs of galaxies are expected to be red, to have larger stellar masses, and to have smaller star formation rates. We also show that the simplest unbiased estimator of the particular marked statistic we use extensively is very simple to measure---it does not require construction of a random catalog---and provide an estimate of its variance. Large wide-field surveys of the sky are revolutionizing our view of galaxies and how they evolve. Our results indicate that application of marked statistics to this high quantity of high-quality data will provide a wealth of information about galaxy formation.

قيم البحث

اقرأ أيضاً

We report on the current status of our search for protoclusters around quasars at z > 4. While the search is still very incomplete, clustered companion galaxies are found in virtually every case examined so far. The implied comoving number densities of protogalaxies are two to four orders of magnitude higher than expected for the general field, but are comparable to the number densities in rich cluster cores. The comoving densities of star formation in these regions are also enhanced by a comparable factor. We interpret these results as an evidence for biased galaxy formation in the highest peaks of the primordial density field.
101 - Eelco van Kampen 1999
We present a method of including galaxy formation in dissipationless N-body simulations. Galaxies that form during the evolution are identified at several epochs and replaced by single massive soft particles. This allows one to produce two-component models containing galaxies and a background dark matter distribution. We applied this technique to obtain two sets of models: one for field galaxies and one for galaxy clusters. We tested the method for the standard CDM scenario for structure formation in the universe. A direct comparison of the simulated galaxy distribution to the observed one sets the amplitude of the initial density fluctuation spectrum, and thus the present time in the simulations. The rates of formation and merging compare very well to simulations that include hydrodynamics, and are compatible with observations. We also discuss the cluster luminosity function.
We investigate galaxy formation in models with dark matter (DM) constituted by sterile neutrinos. Given their large parameter space, defined by the combinations of sterile neutrino mass $m_{ u}$ and mixing parameter $sin^2(2theta)$ with active neutri nos, we focus on models with $m_{ u}=7$ keV, consistent with the tentative 3.5 keV line detected in several X-ray spectra of clusters and galaxies. We consider i) two resonant production models with $sin^2(2theta)=5,10^{-11}$ and $sin^2(2theta)=2,10^{-10}$, to cover the range of mixing parameter consistent with the 3.5 keV line; ii) two scalar-decay models, representative of the two possible cases characterizing such a scenario: a freeze-in and a freeze-out case. We also consider thermal Warm Dark Matter with particle mass $m_X=3$ keV. Using a semi-analytic model, we compare the predictions for the different DM scenarios with a wide set of observables. We find that comparing the predicted evolution of the stellar mass function, the abundance of satellites of Milky Way-like galaxies, and the global star formation history of galaxies with observations does not allow to disentangle the effects of the baryonic physics from those related to the different DM models. On the other hand, the distribution of the stellar-to-halo mass ratios, the abundance of faint galaxies in the UV luminosity function at $zgtrsim 6$, and the specific star formation and age distribution of local, low-mass galaxies constitute potential probes for the considered DM scenarios. We discuss how next observations with upcoming facilities will enable to rule out or to strongly support DM models based on sterile neutrinos.
We compare predictions of a number of empirical models and numerical simulations of galaxy formation to the conditional stellar mass functions (CSMF)of galaxies in groups of different masses obtained recently by Lan et al. to test how well different models accommodate the data. The observational data clearly prefer a model in which star formation in low-mass halos changes behavior at a characteristic redshift $z_csim 2$. There is also tentative evidence that this characteristic redshift depends on environment, becoming $z_csim 4$ in regions that eventually evolve into rich clusters of galaxies. The constrained model is used to understand how galaxies form and evolve in dark matter halos, and to make predictions for other statistical properties of the galaxy population, such as the stellar mass functions of galaxies at high $z$, the star formation and stellar mass assembly histories in dark matter halos. A comparison of our model predictions with those of other empirical models shows that different models can make vastly different predictions, even though all of them are tuned to match the observed stellar mass functions of galaxies.
72 - A. Dekel , A. Zolotov , D. Tweed 2013
We describe simple useful toy models for key processes of galaxy formation in its most active phase, at z > 1, and test the approximate expressions against the typical behaviour in a suite of high-resolution hydro-cosmological simulations of massive galaxies at z = 4-1. We address in particular the evolution of (a) the total mass inflow rate from the cosmic web into galactic haloes based on the EPS approximation, (b) the penetration of baryonic streams into the inner galaxy, (c) the disc size, (d) the implied steady-state gas content and star-formation rate (SFR) in the galaxy subject to mass conservation and a universal star-formation law, (e) the inflow rate within the disc to a central bulge and black hole as derived using energy conservation and self-regulated Q ~ 1 violent disc instability (VDI), and (f) the implied steady state in the disc and bulge. The toy models provide useful approximations for the behaviour of the simulated galaxies. We find that (a) the inflow rate is proportional to mass and to (1+z)^5/2, (b) the penetration to the inner halo is ~50% at z = 4-2, (c) the disc radius is ~5% of the virial radius, (d) the galaxies reach a steady state with the SFR following the accretion rate into the galaxy, (e) there is an intense gas inflow through the disc, comparable to the SFR, following the predictions of VDI, and (f) the galaxies approach a steady state with the bulge mass comparable to the disc mass, where the draining of gas by SFR, outflows and disc inflows is replenished by fresh accretion. Given the agreement with simulations, these toy models are useful for understanding the complex phenomena in simple terms and for back-of-the-envelope predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا