ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties of dust in the high-latitude translucent cloud L1780 I: Spatially distinct dust populations and increased dust emissivity from ISO observations

73   0   0.0 ( 0 )
 نشر من قبل Marianna Ridderstad
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have analyzed the properties of dust in the high galactic latitude translucent cloud Lynds 1780 using ISOPHOT maps at 100 and 200 micrometers and raster scans at 60, 80, 100, 120, 150 and 200 micrometers. In far-infrared (FIR) emission, the cloud has a single core that coincides with the maxima of visual extinction and 200um optical depth. At the resolution of 3.0 arcmin, the maximum visual extinction is 4.0 mag. At the cloud core, the minimum temperature and the maximum 200um optical depth are 14.9+/-0.4 K and 2.0+/-0.2x10^{-3}, respectively, at the resolution of 1.5 arcmin. The cloud mass is estimated to be 18M_{SUN}. The FIR observations, combined with IRAS observations, suggest the presence of different, spatially distinct dust grain populations in the cloud: the FIR core region is the realm of the classical large grains, whereas the very small grains and the PAHs have separate maxima on the Eastern side of the cold core, towards the tail of this cometary-shaped cloud. The color ratios indicate an overabundance of PAHs and VSGs in L1780. Our FIR observations combined with the optical extinction data indicate an increase of the emissivity of the big grain dust component in the cold core, suggesting grain coagulation or some other change in the properties of the large grains. Based on our observations, we also address the question, to what extent the 80um emission and even the 100um and the 120um emission contain a contribution from the small-grain component.



قيم البحث

اقرأ أيضاً

We present detailed modelling of the spectral energy distribution (SED) of the spiral galaxies NGC 891, NGC 4013, and NGC 5907 in the far-infrared (FIR) and sub-millimeter (submm) wavelengths. The model takes into account the emission of the diffuse dust component, which is heated by the UV and optical radiation fields produced by the stars, as well as the emission produced locally in star forming HII complexes. The radiative transfer simulations of Xilouris et al. (1999) in the optical bands are used to constrain the stellar and dust geometrical parameters, as well as the total amount of dust. We find that the submm emission predicted by our model can not account for the observed fluxes at these wavelengths. We examine two cases, one having more dust embedded in a second thin disk and another allowing for an enhanced submillimeter emissivity of the dust grains. We argue that both cases can equally well reproduce the observed SED. The case of having more dust embedded in a second disk though, is not supported by the near-infrared observations and thus more realistic distributions of the dust (i.e., in spiral arms and clumps) have to be examined in order to better fit the surface brightness of each galaxy.
154 - D. Paradis , J.-Ph. Bernard , 2009
Dust properties appear to vary according to the environment in which the dust evolves. Previous observational indications of these variations in the FIR and submm spectral range are scarce and limited to specific regions of the sky. To determine whet her these results can be generalised to larger scales, we study the evolution in dust emissivities from the FIR to mm wavelengths, in the atomic and molecular ISM, along the Galactic plane towards the outer Galaxy. We correlate the dust FIR to mm emission with the HI and CO emission. The study is carried out using the DIRBE data from 100 to 240 mic, the Archeops data from 550 mic to 2.1 mm, and the WMAP data at 3.2 mm (W band), in regions with Galactic latitude |b| < 30 deg, over the Galactic longitude range (75 deg < l < 198 deg) observed with Archeops. In all regions studied, the emissivity spectra in both the atomic and molecular phases are steeper in the FIR (beta = 2.4) than in the submm and mm (beta = 1.5). We find significant variations in the spectral shape of the dust emissivity as a function of the dust temperature in the molecular phase. Regions of similar dust temperature in the molecular and atomic gas exhibit similar emissivity spectra. Regions where the dust is significantly colder in the molecular phase show a significant increase in emissivity for the range 100 - 550 mic. This result supports the hypothesis of grain coagulation in these regions, confirming results obtained over small fractions of the sky in previous studies and allowing us to expand these results to the cold molecular environments in general of the outer MW. We note that it is the first time that these effects have been demonstrated by direct measurement of the emissivity, while previous studies were based only on thermal arguments.
85 - P.N. Appleton 1999
We present the first mid-infrared (Mid-IR) ($lambda5-15mu$m) and radio continuum ($lambdalambda$20,~6 and 3.6 cm) observations of the star-forming collisional ring galaxy VII Zw 466 and its host group made with the Infrared Space Observatory and the NRAO Very Large Array. A search was also made for CO line emission in two of the galaxies with the Onsala 20m radio telescope and upper limits were placed on the mass of molecular gas in those galaxies. The ring galaxy is believed to owe its morphology to a slightly off-center collision between an `intruder galaxy and a disk. An off-center collision is predicted to generate a radially expanding density wave in the disk which should show large azimuthal variations in overdensity, and have observational consequences. The radio continuum emission shows the largest asymmetry, exhibiting a crescent-shaped distribution consistent with either the trapping of cosmic-ray particles in the target disk, or an enhanced supernova rate in the compressed region. On the other hand, the ISO observations (especially those made at $lambda9.6mu$m) show a more scattered distribution, with emission centers associated with powerful star formation sites distributed more uniformly around the ring. Low-signal to noise observations at $lambda15.0mu$m show possible emission inside the ring, with little emission directly associated with the ion{H}{2} regions. The observations emphasize the complex relationship between the generation of radio emission and the development of star formation even in relatively simple and well understood collisional scenarios.
We analyze high angular resolution ALMA observations of the TW Hya disk to place constraints on the CO and dust properties. We present new, sensitive observations of the $^{12}$CO $J = 3-2$ line at a spatial resolution of 8 AU (0farcs14). The CO emis sion exhibits a bright inner core, a shoulder at $rapprox70$ AU, and a prominent break in slope at $rapprox90$ AU. Radiative transfer modeling is used to demonstrate that the emission morphology can be reasonably reproduced with a $^{12}$CO column density profile featuring a steep decrease at $rapprox15$ AU and a secondary bump peaking at $rapprox70$ AU. Similar features have been identified in observations of rarer CO isotopologues, which trace heights closer to the midplane. Substructure in the underlying gas distribution or radially varying CO depletion that affects much of the disks vertical extent may explain the shared emission features of the main CO isotopologues. We also combine archival 1.3 mm and 870 $mu$m continuum observations to produce a spectral index map at a spatial resolution of 2 AU. The spectral index rises sharply at the continuum emission gaps at radii of 25, 41, and 47 AU. This behavior suggests that the grains within the gaps are no larger than a few millimeters. Outside the continuum gaps, the low spectral index values of $alphaapprox 2$ indicate either that grains up to centimeter size are present, or that the bright continuum rings are marginally optically thick at millimeter wavelengths.
Since in situ studies and interplanetary dust collections only provide a spatially limited amount of information about the interplanetary dust properties, it is of major importance to complete these studies with properties inferred from remote observ ations of light scattered and emitted, with interpretation through simulations. Physical properties of the interplanetary dust in the near-ecliptic symmetry surface, such as the local polarization, temperature and composition, together with their heliocentric variations, may be derived from scattered and emitted light observations, giving clues to the respective contribution of the particles sources. A model of light scattering by a cloud of solid particles constituted by spheroidal grains and aggregates thereof is used to interpret the local light scattering data. Equilibrium temperature of the same particles allows us to interpret the temperature heliocentric variations. A good fit of the local polarization phase curve, $P_{alpha}$, near 1.5~AU from the Sun is obtained for a mixture of silicates and more absorbing organics material ($approx$40 % in mass) and for a realistic size distribution typical of the interplanetary dust in the 0.2 to 200 micrometre size range. The contribution of dust particles of cometary origin is at least 20% in mass. The same size distribution of particles gives a solar distance, $R$, dependence of the temperature in $R^{-0.45}$ different than the typical black body behavior. The heliocentric dependence of $P_{alpha=90{deg}}$ is interpreted as a progressive disappearance of solid organics (such as HCN polymers or amorphous carbon) towards the Sun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا