ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral evolution of star clusters in the Large Magellanic Cloud: I. Blue concentrated clusters in the age range 40-300 Myr

317   0   0.0 ( 0 )
 نشر من قبل Jo\\~ao Francisco C. Santos Jr.
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Integrated spectroscopy of a sample of 17 blue concentrated Large Magellanic Cloud (LMC) clusters is presented and its spectral evolution studied. The spectra span the range ~3600-6800A with a resolution of ~14A FWHM, being used to determine cluster ages and, in connection with their spatial distribution, to explore the LMC structure and cluster formation history. Cluster reddening values were estimated by interpolation, using the available extinction maps. We used two methods to derive cluster ages: (i) template matching, in which line strengths and continuum distribution of the cluster spectra were compared and matched to those of template clusters with known astrophysical properties, and (ii) equivalent width (EW) method, in which new age/metallicity calibrations were used together with diagnostic diagrams involving the sum of EWs of selected spectral lines (KCaII, G band (CH), MgI, Hdelta, Hgamma and Hbeta). The derived cluster ages range from 40Myr (NGC2130 and SL237) to 300Myr (NGC1932 and SL709), a good agreement between the results of the two methods being obtained. Combining the present sample with additional ones indicates that cluster deprojected distances from the LMC center are related to age in the sense that inner clusters tend to be younger. Spectral libraries of star clusters are useful datasets for spectral classifications and extraction of parameter information for target star clusters and galaxies. The present cluster sample complements previous ones, in an effort to gather a spectral library with several clusters per age bin.

قيم البحث

اقرأ أيضاً

422 - A. E. Piatti 2005
We present in this study flux-calibrated integrated spectra in the range 3600-6800A for 18 concentrated SMC clusters. Cluster reddening values were estimated by interpolation between the extinction maps of Burstein & Heiles (1982, AJ, 87, 1165) and S chlegel et al. (1998, ApJ, 500, 525). The cluster parameters were derived from the template matching procedure by comparing the line strengths and continuum distribution of the cluster spectra with those of template cluster spectra with known parameters and from the equivalent width (EW) method. In this case, new calibrations were used together with diagnostic diagrams involving the sum of EWs of selected spectral lines. A very good agreement between ages derived from both methods was found. The final cluster ages obtained from the weighted average of values taken from the literature and the present measured ones range from 15 Mr (e.g. L51) to 7 Gyr (K3). Metal abundances have been derived for only 5 clusters from the present sample, while metallicity values directly averaged from published values for other 4 clusters have been adopted. Combining the present cluster sample with 19 additional SMC clusters whose ages and metal abundances were put onto a homogeneous scale, we analyse the age and metallicity distributions in order to explore the SMC star formation history and its spatial extent. By considering the distances of the clusters from the SMC centre instead of their projections onto the right ascension and declination axes, the present age-position relation suggests that the SMC inner disk could have been related to a cluster formation episode which reached the peak ~2.5 Gyr ago. Evidence for an age gradient in the inner SMC disk is also presented.
The YMCA (Yes, Magellanic Clouds Again) and STEP ({The SMC in Time: Evolution of a Prototype interacting late-type dwarf galaxy) projects are deep g,i photometric surveys carried out with the VLT Survey Telescope (VST) and devoted to study the outski rts of the Magellanic System. A main goal of YMCA and STEP is to identify candidate stellar clusters and complete their census out to the outermost regions of the Magellanic Clouds. We adopted a specific over-density search technique coupled with a visual inspection of the color magnitude diagrams (CMDs) to select the best candidates and estimate their ages. To date, we analysed a region of 23 sq. deg. in the outskirts of the Large Magellanic Cloud, detecting 85 candidate cluster candidates, 16 of which have estimated ages falling in the so called age gap. We use these objects together with literature data to gain insight into the formation and interaction history of the Magellanic Clouds.
The color-magnitude diagrams (CMDs) of young star clusters show that, particularly at ultraviolet wavelengths, their upper main sequences (MSs) bifurcate into a sequence comprising the bulk population and a blue periphery. The spatial distribution of stars is crucial to understand the reasons for these distinct stellar populations. This study uses high-resolution photometric data obtained with the Hubble Space Telescope to study the spatial distributions of the stellar populations in seven Magellanic Cloud star clusters. The cumulative radial number fractions of blue stars within four clusters are strongly anti-correlated with those of the high-mass-ratio binaries in the bifurcated region, with negative Pearson coefficients < -0.7. Those clusters generally are young or in an early dynamical evolutionary stage. In addition, a supporting N-body simulation suggests the increasing percentage of blue-MS stars from the cluster centers to their outskirts may be associated with the dissolution of soft binaries. This study provides a different perspective to explore the MS bimodalities in young clusters and adds extra puzzles. A more comprehensive study combined with detailed simulations is needed in the future.
169 - Doug Geisler 1997
We report the first results of a color-magnitude diagram survey of 25 candidate old LMC clusters. For almost all of the sample, it was possible to reach the turnoff region, and in many clusters we have several magnitudes of the main sequence. Age est imates based on the magnitude difference $delta T_1$ between the giant branch clump and the turnoff revealed that no new old clusters were found. The candidates turned out to be of intermediate age (1-3 Gyr) We show that the apparently old ages as inferred from integrated UBV colors can be explained by a combination of stochastic effects produced by bright stars and by photometric errors for faint clusters lying in crowded fields. The relatively metal poor candidates from the CaII triplet spectroscopy also turned out to be of intermediate age. This, combined with the fact that they lie far out in the disk, yields interesting constraints regarding the formation and evolution of the LMC disk. We also study the age distribution of intermediate age and old clusters This homogeneous set of accurate relative ages allows us to make an improved study of the history of cluster formation/destruction for ages $>1$Gyr. We confirm previous indications that there was apparently no cluster formation in the LMC during the period from 3-8 Gyr ago, and that there was a pronounced epoch of cluster formation beginning 3 Gyrs ago that peaked at about 1.5 Gyrs ago. Our results suggest that there are few, if any, genuine old clusters in the LMC left to be found.
We used resolved star counts from Hubble Space Telescope images to determine the center of gravity and the projected density profiles of 6 old globular clusters in the Large Magellanic Cloud (LMC), namely NGC 1466, NGC 1841, NGC 1898, NGC 2210, NGC 2 257 and Hodge 11. For each system, the LMC field contribution was properly taken into account by making use, when needed, of parallel HST observations. The derived values of the center of gravity may differ by several arcseconds (corresponding to more than 1 pc at the distance of the LMC) from previous determinations. The cluster density profiles are all well fit by King models, with structural parameters that may differ from the literature ones by even factors of two. Similarly to what observed for Galactic globular clusters, the ratio between the effective and the core radii has been found to anti-correlate with the cluster dynamical age.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا