ﻻ يوجد ملخص باللغة العربية
We consider a generalized model of seismic-wave propagation that takes into account the effect of a central magnetic field in the Sun. We determine the g-mode spectrum in the perturbative magnetic field limit using a one-dimensional Magneto-Hydrodynamics (MHD) picture. We show that central magnetic fields of about 600-800 kG can displace the pure g-mode frequencies by about 1%, as hinted by the helioseismic interpretation of GOLF observations.
The observation of g-mode candidates by the SoHO mission opens the possibility of probing the internal structure of the solar radiative zone (RZ) and the solar core more directly than possible via the use of the p-mode helioseismology data. We study
We study the effect of turbulent drift of a large-scale magnetic field that results from the interaction of helical convective motions and differential rotation in the solar convection zone. The principal direction of the drift corresponds to the dir
We present an up-to-date estimate for the prospect of using the Astrodynamical Space Test of Relativity using Optical Devices (ASTROD) for an unambiguous detection of solar g modes (f < 400 micro Hertz) through their gravitational signature. There ar
Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not poss
The Standard Solar Model (SSM) is no more sufficient to interpret all the observations of the radiative zone obtained with the SoHO satellite. We recall our present knowledge of this internal region and compare the recent results to models beyond the