ترغب بنشر مسار تعليمي؟ اضغط هنا

A SAURON study of stars and gas in Sa bulges

154   0   0.0 ( 0 )
 نشر من قبل Jesus Falcon-Barroso
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from our ongoing effort to understand the morphological and kinematical properties of early-type galaxies using the integral-field spectrograph SAURON. We discuss the relation between the stellar and gas morphology and kinematics in our sub-sample of 24 representative Sa spiral bulges. We focus on the frequency of kinematically decoupled components and on the presence of star formation in circumnuclear rings.

قيم البحث

اقرأ أيضاً

We present results from our ongoing effort to understand the nature and evolution of nearby galaxies using the SAURON integral-field spectrograph. In this proceeding we focus on the study of the particular case formed by the interacting galaxies NGC5 953 and NGC5954. We present stellar and gas kinematics of the central regions of NGC5953. We use a simple procedure to determine the age of the stellar populations in the central regions and argue that we may be witnessing the formation of a kinematically decoupled component from cold gas being acquired during the ongoing interaction with NGC5954.
We present results from a new and unique integral-field spectrograph, SAURON. It has a large field of view and high throughput and is primarily built for the study of stellar & gaseous kinematics and stellar populations in galaxies. Its aim is to car ry out a systematic survey of the velocity fields, velocity dispersions, and line-strength distributions of nearby ellipticals, lenticular galaxies and spiral bulges. Its wide field is especially useful for the study of complicated velocity structures. Together with other spectroscopic data, images, and dynamical modelling, SAURON will help to constrain the intrinsic shapes, mass-to-light ratios, and stellar populations of early-type galaxies and spiral bulges.
Kinematic and population studies show that bulges are generally rotationally flattened systems similar to low-luminosity ellipticals. However, observations with state-of-the-art integral field spectrographs, such as SAURON, indicate that the situatio n is much more complex, and allow us to investigate phenomena such as triaxiality, kinematic decoupling and population substructure, and to study their connection to current formation and evolution scenarios for bulges of early-type galaxies. We present the examples of two S0 bulges from galaxies in our sample of nearby galaxies: one that shows all the properties expected from classical bulges (NGC5866), and another case that presents kinematic features appropriate for barred disk galaxies (NGC7332).
[Abridged] We present ground-based MDM V-band and Spitzer/IRAC 3.6um-band photometric observations of the 72 representative galaxies of the SAURON Survey. In combination with the SAURON stellar velocity dispersion measured within an effective radius (se), this allows us to explore the location of our galaxies in the main scaling relations. We investigate the dependence of these relations on our recent kinematical classification of early-type galaxies (i.e. Slow/Fast Rotators) and the stellar populations. Slow Rotator and Fast Rotator E/S0 galaxies do not populate distinct locations in the scaling relations, although Slow Rotators display a smaller intrinsic scatter. Surprisingly, extremely young objects do not display the bluest (V-[3.6]) colours in our sample, as is usually the case in optical colours. This can be understood in the context of the large contribution of TP-AGB stars to the infrared, even for young populations, resulting in a very tight (V-[3.6]) - se relation that in turn allows us to define a strong correlation between metallicity and velocity dispersion. Many Sa galaxies appear to follow the Fundamental Plane defined by E/S0 galaxies. Galaxies that appear offset from the relations correspond mostly to objects with extremely young populations, with signs of on-going, extended star formation. We correct for this effect in the Fundamental Plane, by replacing luminosity with stellar mass using an estimate of the stellar mass-to-light ratio, so that all galaxies are part of a tight, single relation. The new estimated coefficients are consistent in both photometric bands and suggest that differences in stellar populations account for about half of the observed tilt with respect to the virial prediction. After these corrections, the Slow Rotator family shows almost no intrinsic scatter around the best-fit Fundamental Plane.
We present SAURON integral-field observations of the S0 galaxy NGC7332. Existing broad-band ground-based and HST photometry reveals a double disk structure and a boxy bulge interpreted as a bar viewed close to edge-on. The SAURON two-dimensional stel lar kinematic maps confirm the existence of the bar and inner disk but also uncover the presence of a cold counter-rotating stellar component within the central 250 pc. The Hbeta and [OIII] emission line maps show that the ionised gas has a complex morphology and kinematics, including both a component counter-rotating with respect to the stars and a fainter co-rotating one. Analysis of the absorption line-strength maps show that NGC7332 is young everywhere. The presence of a large-scale bar can explain most of those properties, but the fact that we see a significant amount of unsettled gas, together with a few peculiar features in the maps, suggest that NGC7332 is still evolving. Interactions as well as bar-driven processes must thus have played an important role in the formation and evolution of NGC7332, and presumably of S0 galaxies in general.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا