ﻻ يوجد ملخص باللغة العربية
(Abridged) We present the first results from our spectroscopic survey of the environments of strong gravitational lenses. The lens galaxy belongs to a poor group of galaxies in six of the eight systems in our sample. We discover three new groups associated with the lens galaxies of BRI 0952-0115 (five members), MG 1654+1346 (seven members), and B2114+022 (five members). We more than double the number of members for another three previously known groups around the lenses MG 0751+2716 (13 total members), PG 1115+080 (13 total members), and B1422+231 (16 total members). We determine the kinematics of the six groups, including their mean velocities, velocity dispersions, and projected spatial centroids. The velocity dispersions of the groups range from 110 +170, -80 to 470 +100, -90 km/s. In at least three of the lenses -- MG0751, PG1115, and B1422 -- the group environment significantly affects the lens potential. These lenses happen to be the quadruply-imaged ones in our sample, which suggests a connection between image configuration and environment. The lens galaxy is the brightest member in fewer than half of the groups. Our survey also allows us to assess for the first time whether mass structures along the line of sight are important for lensing. We first show that, in principle, the lens potential may be affected by line-of-sight structures over a wide range of spatial and redshift offsets from the lens. We then quantify real line-of-sight effects using our survey and find that at least four of the eight lens fields have substantial interloping structures close in projection to the lens, and at least one of those structures (in the field of MG0751) significantly affects the lens potential.
Most gravitational lens galaxies are early-type galaxies in relatively low density environments. We show that they lie on the same fundamental plane as early-type galaxies in both local and distant rich clusters. Their surface brightness evolution re
Many strong gravitational lenses lie in complex environments, such as poor groups of galaxies, that significantly bias conclusions from lens analyses. We are undertaking a photometric survey of all known galaxy-mass strong lenses to characterize thei
We present new optical data on the cluster AX J2019+1127 identified by the X-ray satellite ASCA at zsim 1 (Hattori et al. 1997). The data suggest the presence of a high-redshift cluster of galaxies responsible for the large separation triple quasar M
We explore the halo structure of four gravitational lenses with well-observed, thin Einstein rings. We find that the gravitational potentials are well described by ellipsoidal density distributions in the sense that the best-fit nonellipsoidal models
We present the results of phase-referenced VLBA+Effelsberg observations at five frequencies of the gravitational lens B0218+357 to establish the precise registration of the A and B lensed image positions.