ﻻ يوجد ملخص باللغة العربية
A new method of a primary cosmic particle energy measurement with the extensive air shower (EAS) technique has been developed by exploiting: a) the joint analysis of the shower size, obtained by the EAS-TOP array, and of the EAS Cherenkov light lateral distribution (LDF), obtained by the QUEST array, and b) simulations based on the CORSIKA code. The method is based on the strict correlation between the size/energy ratio and the steepness of the Cherenkov light lateral distribution and has been compared with a classical one based on the Cherenkov light flux at a fixed distance (175 m) from the EAS core. The independence of the energy measurement both on the mass of primary particle and the hadronic interaction model used for the analysis is shown. Based on this approach the experimental integral intensity of cosmic rays flux with energy more than 3*10^15 eV is obtained with good systematic and statistical accuracy.
Our Galaxy is filled with cosmic-ray particles and more than 98% of them are atomic nuclei. In order to clarify their origin and acceleration mechanism, chemical composition measurements of these cosmic rays with wide energy coverage play an importan
A compact device lifted over the ground surface might be used to observe optical radiation of extensive air showers (EAS). Here we consider spatial and temporal characteristics of Vavilov-Cherenkov radiation (Cherenkov light) reflected from the snow
An interpretation of AGASA (Akeno Giant Air Shower Array) data by comparing the experimental results with the simulated ones by CORSIKA (COsmic Ray SImulation for KASCADE) has been made. General features of the electromagnetic component and low energ
The project of an EAS Cherenkov array in the Tunka valley/Siberia with an area of about 1 km2 is presented. The new array will have a ten times bigger area than the existing Tunka-25 array and will permit a detailed study of the cosmic ray energy spe
The fluxes of atmospheric muons and neutrinos are calculated by a three dimensional Monte Carlo simulation with the air shower code CORSIKA using the hadronic interaction models DPMJET, VENUS, GHEISHA, and UrQMD. For the simulation of low energy prim