ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational results for northern and southern (candidate) gamma Doradus stars

61   0   0.0 ( 0 )
 نشر من قبل Peter De Cat
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. De Cat




اسأل ChatGPT حول البحث

We report on observational results obtained for 78 objects originally classified as bona-fide or candidate gamma Doradus stars. For the southern objects, we gathered echelle spectra with the CORALIE spectrograph attached to the Euler telescope in 1998-2003 and/or Johnson-Cousins B,V,Ic observations with the MODULAR photometer attached to the 0.5-m SAAO telescope in 1999-2000. For the northern objects, we obtained Geneva U,B,B1,B2,V,V1,G observations with the P7 photometer attached to the 1.2-m MERCATOR telescope in 2001-2004. At least 15 of our objects are binaries, of which 7 are new. For 6 binaries, we determined the orbit for the first time. At least 17 objects show profile variations and at least 12 objects are multiperiodic photometric variables. Our results allow us to upgrade 11 objects to bona-fide gamma Doradus stars and to downgrade 8 objects to constant up to the current detection limits. Mode identification is still ongoing, but so far, only l = 1 and 2 modes have been identified.

قيم البحث

اقرأ أيضاً

221 - P. De Cat 2005
We present results of a spectroscopic study of 37 southern (candidate) gamma Doradus stars based on echelle spectra. The observed spectra were cross-correlated with the standard template spectrum of an F0-type star for an easier detection of binary a nd intrinsic variations. We identified 15 objects as spectroscopic binaries, including 7 new ones, and another 3 objects are binary suspects. At least 12 objects show composite spectra. We could determine the orbital parameters for 9 binaries, of which 4 turn out to be ellipsoidal variables. For 6 binaries, we estimated the expected time-base of the orbital variations. Clear profile variations are observed for 17 objects, pointing towards stellar pulsation. For 8 of them, we have evidence that the main spectroscopic and photometric periods coincide. Our results, in combination with prior knowledge from the literature, lead to the classification of 10 objects as new bona-fide gamma Doradus stars, 1 object as new bona-fide delta Scuti star, and 8 objects as constant stars. Finally, we determined the projected rotational velocity with two independent methods. The resulting vsini values range from 3 to 135 km/s. For the bona-fide gamma Doradus stars, the majority has vsini below 60 km/s.
The hot $gamma$~Doradus stars have multiple low frequencies characteristic of $gamma$~Dor or SPB variables, but are located between the red edge of the SPB and the blue edge of the $gamma$~Dor instability strips where all low-frequency modes are stab le in current models of these stars. Though $delta$~Sct stars also have low frequencies, there is no sign of high frequencies in hot $gamma$~Dor stars. We obtained spectra to refine the locations of some of these stars in the H-R diagram and conclude that these are, indeed, anomalous pulsating stars. The Maia variables have multiple high frequencies characteristic of $beta$~Cep and $delta$~Sct stars, but lie between the red edge of the $beta$~Cep and the blue edge of the $delta$~Sct instability strips. We compile a list of all Maia candidates and obtain spectra of two of these stars. Again, it seems likely that these are anomalous pulsating stars which are currently not understood.
We present a spectroscopic survey of known and candidate $gamma$,Doradus stars. The high-resolution, high signal-to-noise spectra of 52 objects were collected by five different spectrographs. The spectral classification, atmospheric parameters (teff, $log g$, $xi$), $vsin i$ and chemical composition of the stars were derived. The stellar spectral and luminosity classes were found between G0-A7 and IV-V, respectively. The initial values for teff and logg were determined from the photometric indices and spectral energy distribution. Those parameters were improved by the analysis of hydrogen lines. The final values of teff, logg and $xi$ were derived from the iron lines analysis. The teff values were found between 6000,K and 7900,K, while logg,values range from 3.8 to 4.5,dex. Chemical abundances and $vsin i$ values were derived by the spectrum synthesis method. The $vsin i$ values were found between 5 and 240,km,s$^{-1}$. The chemical abundance pattern of $gamma$,Doradus stars were compared with the pattern of non-pulsating stars. It turned out that there is no significant difference in abundance patterns between these two groups. Additionally, the relations between the atmospheric parameters and the pulsation quantities were checked. A strong correlation between the $vsin i$ and the pulsation periods of $gamma$,Doradus variables was obtained. The accurate positions of the analysed stars in the H-R diagram have been shown. Most of our objects are located inside or close to the blue edge of the theoretical instability strip of $gamma$,Doradus.
A method for obtaining asteroseismological information of a Gamma Doradus oscillating star showing at least three pulsation frequencies is presented. This method is based on a first-order asymptotic g-mode expression, in agreement with the internal s tructure of Gamma Doradus stars. The information obtained is twofold: 1) a possible identification of the radial order n and degree l of observed frequencies (assuming that these have the same l), and 2) an estimate of the integral of the buoyancy frequency (Brunt-Vaisala) weighted over the stellar radius along the radiative zone. The accuracy of the method as well as its theoretical consistency are also discussed for a typical Gamma Doradus stellar model. Finally, the frequency ratios method has been tested with observed frequencies of the Gamma Doradus star HD 12901. The number of representative models verifying the complete set of constraints (the location in the HR diagram, the Brunt-Vaisala frequency integral, the observed metallicity and frequencies and a reliable identification of n and l) is drastically reduced to six.
The space-based Kepler mission provided four years of highly precise and almost uninterrupted photometry for hundreds of $gamma$ Doradus stars and tens of SPB stars, finally allowing us to apply asteroseismology to these gravity mode pulsators. Witho ut rotation, gravity modes are equally spaced in period. This simple structure does not hold in rotating stars for which rotation needs to be taken into account to accurately interpret the oscillation spectrum. We aim to develop a stellar-model-independent method to analyse and interpret the oscillation spectrum of $gamma$ Dor and SPB stars. Within the traditional approximation of rotation, we highlight the possibility of recovering the equidistance of period spacings by stretching the pulsation periods. The stretching function depends on the degree and azimuthal order of gravity modes and the rotation rate of the star. In this new stretched space, the pulsation modes are regularly spaced by the stellar buoyancy radius. On the basis of this property, we implemented a method to search for these new regularities and simultaneously infer the rotation frequency and buoyancy radius. Tests on synthetic spectra computed with a non-perturbative approach show that we can retrieve these two parameters with reasonable accuracy along with the mode identification. In uniformly rotating models of a typical $gamma$ Dor star, and for the most observed prograde dipole modes, we show that the accuracy on the derived parameters is better than 5% on both the internal rotation rate and the buoyancy radius. Finally, we apply the method to two stars of the Kepler field, a $gamma$ Dor and an SPB, and compare our results with those of other existing methods. We provide a stellar-model-independent method to obtain the near-core rotation rate, the buoyancy radius and mode identification from g-mode spectra of $gamma$ Dor and SPB stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا