ترغب بنشر مسار تعليمي؟ اضغط هنا

A highly-ionized absorber as a new explanation for the spectral changes during dips from X-ray binaries

94   0   0.0 ( 0 )
 نشر من قبل L. Boirin
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. Boirin




اسأل ChatGPT حول البحث

Until now, the spectral changes observed from persistent to dipping intervals in dipping low-mass X-ray binaries were explained by invoking progressive and partial covering of an extended emission region. Here, we propose a novel and simpler way to explain these spectral changes, which does not require any partial covering and hence any extended corona, and further has the advantage of explaining self-consistently the spectral changes both in the continuum and the narrow absorption lines that are now revealed by XMM-Newton. In 4U 1323-62, we detect Fe XXV and Fe XXVI absorption lines and model them for the first time by including a complete photo-ionized absorber model rather than individual Gaussian profiles. We demonstrate that the spectral changes both in the continuum and the lines can be simply modeled by variations in the properties of the ionized absorber. From persistent to dipping the photo-ionization parameter decreases while the equivalent hydrogen column density of the ionized absorber increases. In a recent work (see Diaz Trigo et al. in these proceedings), we show that our new approach can be successfully applied to all the other dipping sources that have been observed by XMM-Newton.



قيم البحث

اقرأ أيضاً

70 - L. Boirin 2004
We report the detection of narrow Fe XXV and Fe XXVI X-ray absorption lines at 6.68 +/- 0.04 keV and 6.97 +/- 0.05 keV in the persistent emission of the dipping low-mass X-ray binary 4U 1323-62 during a 2003 January XMM-Newton observation. These feat ures are superposed on a broad emission feature centered on 6.6 {+0.1}{-0.2} keV. During dipping intervals the equivalent width of the Fe XXV feature increases while that of the Fe XXVI feature decreases, consistent with the presence of less strongly ionized material in the line-of-sight. As observed previously, the changes in the 1.0-10 keV spectrum during dips are inconsistent with a simple increase in absorption by cool material. However, the changes in both the absorption features and the continuum can be modeled by variations in the properties of an ionized absorber. No partial covering of any component of the spectrum, and hence no extended corona, are required. From persistent to deep dipping the photo-ionization parameter, Xi, expressed in erg cm s^{-1}, decreases from log(Xi) of 3.9 +/- 0.1 to log(Xi) of 3.13 +/- 0.07, while the equivalent hydrogen column density of the ionized absorber increases from (3.8 +/- 0.4) 10^{22} atoms cm^{-2} to (37 +/- 2) 10^{22} atoms cm^{-2}. Since highly-ionized absorption features are seen from many other dip sources, this mechanism may also explain the overall changes in X-ray spectrum observed during dipping intervals from these systems.
We present results of the Suzaku observation of the dipping, periodically bursting low mass X-ray binary XB 1323-619 in which we concentrate of the spectral evolution in dipping in the energy range 0.8 - 70 keV. It is shown that spectral evolution in dipping is well-described by absorption on the bulge in the outer accretion disk of two continuum components: emission of the neutron star plus the dominant, extended Comptonized emission of the accretion disk corona (ADC). This model is further supported by detection of a relatively small, energy-independent decrease of flux above 20 keV due to Thomson scattering. It is shown that this is consistent with the electron scattering expected of the bulge plasma. We address the recent proposal that the dip sources may be explained by an ionized absorber model giving a number of physical arguments against this model. In particular, that model is inconsistent with the extended nature of the ADC for which the evidence is now overwhelming.
Photoionized absorbers of outflowing gas are commonly found in the X-ray spectra of active galactic nuclei (AGN). While most of these absorbers are seldom significantly variable, some ionized obscurers have been increasingly found to substantially ch ange their column density on a wide range of time scales. These $N_text{H}$ variations are often considered as the signature of the clumpy nature of the absorbers. Here we present the analysis of a new Neil Gehrels Swift Observatory campaign of the type-1 quasar PG 1114+445, which was observed to investigate the time evolution of the multiphase outflowing absorbers previously detected in its spectra. The analyzed dataset consists of 22 observations, with a total exposure of $sim90$ ks, spanning about $20$ months. During the whole campaign, we report an unusually low flux state with respect to all previous X-ray observations of this quasar. From the analysis of the stacked spectra we find a fully covering absorber with a column density $log(N_text{H}/text{cm}^{-2})=22.9^{+0.3}_{-0.1}$. This is an order of magnitude higher than the column density measured in the previous observations. This is either due to a variation of the known absorbers, or by a new one, eclipsing the X-ray emitting source. We also find a ionization parameter of $log(xi/text{erg cm s}^{-1})=1.4^{+0.6}_{-0.2}$. Assuming that the obscuration lasts for the whole duration of the campaign, i.e. more than $20$ months, we estimate the minimum distance of the ionized clump, which is located at $rgtrsim0.5$ pc.
324 - L. Piro 2005
The Seyfert 1 galaxy NGC4151 is characterized by complex X-ray absorption, well described by a dual absorber, composed of a uniform mildly ionized gas and a cold system that partially covers the central source. However, in one of the 5 BeppoSAX obser vations, the spectrum shows two peculiar features. An absorption feature is detected around 8.5-9 keV with a statistical significance of 99.96%. This feature can be fitted either with an absorption edge at E=8.62^{+0.34}_{-0.52} keV with optical depth tau=0.06pm0.03 or with an absorption line with 9.5^{+1.3}_{-0.6} keV, width sigma=0.95^{+1.2}_{-0.7} keV and EW= 200 eV. In the first case, we associate the feature to highly ionized iron at rest, like FeXXII-FeXXIII (E_{rest}=8.4-8.5 keV). In the second case the feature could be identified with a blend of FeXXV and FeXXVI lines, with an outflow velocity v approx (0.09-0.26)c. This spectrum is also characterized by a substantial reduction of the absorption column density and the covering fraction of the dual absorber. In particular the column density of the mildly ionized and cold absorbers is approx 3-5 times lower than observed in the other states, and the covering fraction is reduced by approx 40 per cent. We propose a possible explanation linking the two properties in terms of a multi-phase ionized absorber.
We examine the periodic nature of detailed structure (particularly dips) in the RXTE/ASM lightcurve of Circinus X-1. The significant phase wandering of the X-ray maxima suggests their identification with the response on a viscous timescale of the acc retion disk to perturbation. We find that the X-ray dips provide a more accurate system clock than the maxima, and thus use these as indicators of the times of periastron passage. We fit a quadratic ephemeris to these dips, and find its predictive power for the X-ray lightcurve to be superior to ephemerides based on the radio flares and the full archival X-ray lightcurve. Under the hypothesis that the dips are tracers of the mass transfer rate from the donor, we use their occurrence rate as a function of orbital phase to explore the (as yet unconstrained) nature of the donor. The high $dot{P}$ term in the ephemeris provides another piece of evidence that Cir X-1 is in a state of dynamical evolution, and thus is a very young post-supernova system. We further suggest that the radio ``synchrotron nebula immediately surrounding Cir X-1 is in fact the remnant of the event that created the compact object, and discuss briefly the evidence for and against such an interpretation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا