ترغب بنشر مسار تعليمي؟ اضغط هنا

Determining the cosmic ray ionization rate in dynamically evolving clouds

38   0   0.0 ( 0 )
 نشر من قبل Chris Lintott
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ionization fraction is an important factor in determining the chemical and physical evolution of star forming regions. In the dense, dark starless cores of such objects, the ionization rate is dominated by cosmic rays; it is therefore possible to use simple analytic estimators, based on the relative abundances of different molecular tracers, to determine the cosmic ray ionization rate. This paper uses a simple model to investigate the accuracy of two well-known estimators in dynamically evolving molecular clouds. It is found that, although the analytical formulae based on the abundances of H3+,H2,CO,O,H2O and HCO+ give a reasonably accurate measure of the cosmic ray ionization rate in static, quiescent clouds, significant discrepancies occur in rapidly evolving (collapsing) clouds. As recent evidence suggests that molecular clouds may consist of complex, dynamically evolving sub-structure, we conclude that simple abundance ratios do not provide reliable estimates of the cosmic ray ionization rate in dynamically active regions.

قيم البحث

اقرأ أيضاً

We present a new method for the simultaneous calculation of the cosmic ray ionization rate, zeta(H2), and the ionization fraction, chi(e), in dense molecular clouds. A simple network of chemical reactions dominant in the creation and destruction of H CNH+ and HCO+ is used in conjunction with observed pairs of rotational transitions of several molecular species in order to determine the electron abundance and the H3+ abundance. The cosmic ray ionization rate is then calculated by taking advantage of the fact that, in dark clouds, it governs the rate of creation of H3+. We apply this technique to the case of the star-forming region DR21(OH), where we successfully detected the (J=3-2) and (J=4-3) rotational transitions of HCNH+. We also determine the C and O isotopic ratios in this source to be 12C/13C=63+-4 and 16O/18O=318+-64, which are in good agreement with previous measurements in other clouds. The significance of our method lies in the ability to determine N(H3+) and chi(e) directly from observations, and estimate zeta(H2) accordingly. Our results, zeta(H2)=3.1x10^(-18) 1/s and chi(e)=3.2x10^(-8), are consistent with recent determinations in other objects.
Low energy cosmic rays are the major ionization agents of molecular clouds. However, it has been shown that, if the cosmic ray spectrum measured by Voyager 1 is representative of the whole Galaxy, the predicted ionization rate in diffuse clouds fails to reproduce data by 1-2 orders of magnitude, implying that an additional source of ionization must exist. One of the solutions proposed to explain this discrepancy is based on the existence of an unknown low energy (in the range 1 keV-1 MeV, not probed by Voyager) cosmic ray component, called carrot when first hypothesized by Reeves and collaborators in the seventies. Here we investigate the energetic required by such scenario. We show that the power needed to maintain such low energy component is comparable of even larger than that needed to explain the entire observed cosmic ray spectrum. Moreover, if the interstellar turbulent magnetic field has to sustain a carrot, through second-order Fermi acceleration, the required turbulence level would be definitely too large compared to the one expected at the scale resonant with such low energy particles. Our study basically rules out all the plausible sources of a cosmic ray carrot, thus making such hidden component unlikely to be an appealing and viable source of ionization in molecular clouds.
101 - Gargi Shaw , G. J. Ferland 2021
The cosmic-ray ionization rate ($zeta$, s$^{-1}$) plays an important role in the interstellar medium. It controls ion-molecular chemistry and provides a source of heating. Here we perform a grid of calculations using the spectral synthesis code CLOUD Y along nine sightlines towards, HD 169454, HD 110432, HD 204827, $lambda$ Cep, X Per, HD 73882, HD 154368, Cyg OB2 5, Cyg OB2 12. The value of $zeta$ is determined by matching the observed column densities of H$_3^+$ and H$_2$. The presence of polycyclic aromatic hydrocarbons (PAHs) affects the free electron density, which changes the H$_3^+$ density and the derived ionization rate. PAHs are ubiquitous in the Galaxy, but there are also regions where PAHs do not exist. Hence, we consider clouds with a range of PAH abundances and show their effects on the H$_3^+$ abundance. We predict an average cosmic-ray ionization rate for H$_2$ ($zeta$(H$_2$))= (7.88 $pm$ 2.89) $times$ 10$^{-16}$ s$^{-1}$ for models with average Galactic PAHs abundances, (PAH/H =10$^{-6.52}$), except Cyg OB2 5 and Cyg OB2 12. The value of $zeta$ is nearly 1 dex smaller for sightlines toward Cyg OB2 12. We estimate the average value of $zeta$(H$_2$)= (95.69 $pm$ 46.56) $times$ 10$^{-16}$ s$^{-1}$ for models without PAHs.
We present a systematic study of deuterated molecular hydrogen (HD) at high redshift, detected in absorption in the spectra of quasars. We present four new identifications of HD lines associated with known $rm H_2$-bearing Damped Lyman-$alpha$ system s. In addition, we measure upper limits on the $rm HD$ column density in twelve recently identified $rm H_2$-bearing DLAs. We find that the new $rm HD$ detections have similar $N({rm HD})/N(rm H_2)$ ratios as previously found, further strengthening a marked difference with measurements through the Galaxy. This is likely due to differences in physical conditions and metallicity between the local and the high-redshift interstellar media. Using the measured $N({rm HD})/N({rm H_2})$ ratios together with priors on the UV flux ($chi$) and number densities ($n$), obtained from analysis of $rm H_2$ and associated CI lines, we are able to constrain the cosmic-ray ionization rate (CRIR, $zeta$) for the new $rm HD$ detections and for eight known HD-bearing systems where priors on $n$ and $chi$ are available. We find significant dispersion in $zeta$, from a few $times 10^{-18}$ s$^{-1}$ to a few $times 10^{-15}$ s$^{-1}$. We also find that $zeta$ strongly correlates with $chi$ -- showing almost quadratic dependence, slightly correlates with $Z$, and does not correlate with $n$, which probably reflects a physical connection between cosmic rays and star-forming regions.
We study the effect that non-equilibrium chemistry in dynamical models of collapsing molecular cloud cores has on measurements of the magnetic field in these cores, the degree of ionization, and the mean molecular weight of ions. We find that OH and CN, usually used in Zeeman observations of the line-of-sight magnetic field, have an abundance that decreases toward the center of the core much faster than the density increases. As a result, Zeeman observations tend to sample the outer layers of the core and consistently underestimate the core magnetic field. The degree of ionization follows a complicated dependence on the number density at central densities up to 10^5 cm^{-3} for magnetic models and 10^6 cm^{-3} in non-magnetic models. At higher central densities the scaling approaches a power-law with a slope of -0.6 and a normalization which depends on the cosmic-ray ionization rate {zeta} and the temperature T as ({zeta}T)^1/2. The mean molecular weight of ions is systematically lower than the usually assumed value of 20 - 30, and, at high densities, approaches a value of 3 due to the asymptotic dominance of the H3+ ion. This significantly lower value implies that ambipolar diffusion operates faster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا