ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive star feedback - from the first stars to the present

43   0   0.0 ( 0 )
 نشر من قبل Jorick S. Vink
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jorick S. Vink




اسأل ChatGPT حول البحث

The amount of mass loss is of fundamental importance to the lives and deaths of very massive stars, the input of chemical elements and momentum into the interstellar and intergalactic media, as well as the emitted ionizing radiation. I review mass-loss predictions for hot massive stars as a function of metal content for groups of OB stars, Luminous Blue Variables, and Wolf-Rayet stars. Although it is found that the predicted mass-loss rates drop steeply with decreasing metal content (Mdot ~ Z^{0.7-0.85}), I highlight two pieces of physics that are often overlooked: (i) mass-loss predictions for massive stars approaching the Eddington limit, and for (ii) stars that have enriched their own atmospheres with primary elements such as carbon. Both of these effects may significantly boost the mass-loss rates of the first stars - relevant for the reionization of the Universe, and a potential pre-enrichment of the intergalactic medium - prior to the first supernova explosions.

قيم البحث

اقرأ أيضاً

Massive stars are powerful sources of radiation, stellar winds, and supernova explosions. The radiative and mechanical energies injected by massive stars into the interstellar medium (ISM) profoundly alter the structure and evolution of the ISM, whic h subsequently influences the star formation and chemical evolution of the host galaxy. In this review, we will use the Large Magellanic Cloud (LMC) as a laboratory to showcase effects of energy feedback from massive young stellar objects (YSOs) and mature stars. We will also use the Carina Nebula in the Galaxy to illustrate a multi-wavelength study of feedback from massive star.
The first stars form in dark matter halos of masses ~10^6 M_sun as suggested by an increasing number of numerical simulations. Radiation feedback from these stars expels most of the gas from their shallow potential well of their surrounding dark matt er halos. We use cosmological adaptive mesh refinement simulations that include self-consistent Population III star formation and feedback to examine the properties of assembling early dwarf galaxies. Accurate radiative transport is modeled with adaptive ray tracing. We include supernova explosions and follow the metal enrichment of the intergalactic medium. The calculations focus on the formation of several dwarf galaxies and their progenitors. In these halos, baryon fractions in 10^8 solar mass halos decrease by a factor of 2 with stellar feedback and by a factor of 3 with supernova explosions. We find that radiation feedback and supernova explosions increase gaseous spin parameters up to a factor of 4 and vary with time. Stellar feedback, supernova explosions, and H_2 cooling create a complex, multi-phase interstellar medium whose densities and temperatures can span up to 6 orders of magnitude at a given radius. The pair-instability supernovae of Population III stars alone enrich the halos with virial temperatures of 10^4 K to approximately 10^{-3} of solar metallicity. We find that 40% of the heavy elements resides in the intergalactic medium (IGM) at the end of our calculations. The highest metallicity gas exists in supernova remnants and very dilute regions of the IGM.
The growth of the first super massive black holes (SMBHs) at z > 6 is still a major challenge for theoretical models. If it starts from black hole (BH) remnants of Population III stars (light seeds with mass ~ 100 Msun) it requires super-Eddington ac cretion. An alternative route is to start from heavy seeds formed by the direct collapse of gas onto a ~ 10^5 Msun BH. Here we investigate the relative role of light and heavy seeds as BH progenitors of the first SMBHs. We use the cosmological, data constrained semi-analytic model GAMETE/QSOdust to simulate several independent merger histories of z > 6 quasars. Using physically motivated prescriptions to form light and heavy seeds in the progenitor galaxies, we find that the formation of a few heavy seeds (between 3 and 30 in our reference model) enables the Eddington-limited growth of SMBHs at z > 6. This conclusion depends sensitively on the interplay between chemical, radiative and mechanical feedback effects, which easily erase the conditions that allow the suppression of gas cooling in the low metallicity gas (Z < Zcr and JLW > Jcr). We find that heavy seeds can not form if dust cooling triggers gas fragmentation above a critical dust-to-gas mass ratio (D > Dcr). In addition, the relative importance of light and heavy seeds depends on the adopted mass range for light seeds, as this dramatically affects the history of cold gas along the merger tree, by both SN and AGN-driven winds.
71 - John A. Regan 2018
Super-Eddington accretion onto massive black hole seeds may be commonplace in the early Universe, where the conditions exist for rapid accretion. Direct collapse black holes are often invoked as a possible solution to the observation of super massive black holes (SMBHs) in the pre-reionisation Universe. We investigate here how feedback, mainly in the form of bipolar jets, from super-Eddington accreting seed black holes will affect their subsequent growth. We find that, nearly independent of the mass loading of the bipolar jets, the violent outflows generated by the jets evacuate a region of approximately 0.1 pc surrounding the black hole seed. However, the jet outflows are unable to break free of the halo and their impact is limited to the immediate vicinity of the black hole. The outflows suppress any accretion for approximately a dynamical time. The gas then cools, recombines and falls back to the centre where high accretion rates are again observed. The overall effect is to create an effective accretion rate with values of between 0.1 and 0.5 times the Eddington rate. If this episodic accretion rate is maintained for order 500 million years then the black hole will increase in mass by a factor of between 3 and 300 but far short of the factor of $10^4$ required for the seeds to become the SMBHs observed at $z>6$. Therefore, direct collapse black holes born into atomic cooling haloes and which experience strong negative mechanical feedback will require external influences (e.g. rapid major mergers with other haloes) to promote efficient accretion and reach SMBH masses within a few hundred million years.
The young star clusters we observe today are the building blocks of a new generation of stars and planets in our Galaxy and beyond. Despite their fundamental role we still lack knowledge about the conditions under which star clusters form and the imp act of these often harsh environments on the evolution of their stellar and substellar members. We demonstrate the vital role numerical simulations play to uncover both key issues. Using dynamical models of different star cluster environments we show the variety of effects stellar interactions potentially have. Moreover, our significantly improved measure of mass segregation reveals that it can occur rapidly even for star clusters without substructure. This finding is a critical step to resolve the controversial debate on mass segregation in young star clusters and provides strong constraints on their initial conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا