ﻻ يوجد ملخص باللغة العربية
We present results from a multi-wavelength campaign to monitor the 2005 outburst of the low-mass young star V1118 Ori. Although our campaign covers the X-ray, optical, infrared, and radio regimes, we focus in this Letter on the properties of the X-ray emission in V1118 Ori during the first few months after the optical outburst. Chandra and XMM-Newton detected V1118 Ori at three epochs in early 2005. The X-ray flux and luminosity stayed similar within a factor of two, and at the same level as in a pre-outburst observation in 2002. The hydrogen column density showed no evidence for variation from its modest pre-outburst value of $N_mathrm{H} sim 3 times 10^{21}$ cm$^{-2}$. However, a spectral change occurred from a dominant hot plasma ($sim 25$ MK) in 2002 and in January 2005 to a cooler plasma ($sim 8$ MK) in February 2005 and in March 2005. We hypothesize that the hot magnetic loops high in the corona were disrupted by the closing in of the accretion disk due to the increased accretion rate during the outburst, whereas the lower cooler loops were probably less affected and became the dominant coronal component.
We present a combined Suzaku and Swift BAT broad-band E=0.6-200keV spectral analysis of three 3C 111 observations obtained in 2010. The data are well described with an absorbed power-law continuum and a weak (R~0.2) cold reflection component from dis
After a quiescence period of about 10 years, the classical EXor source V1118 Ori has undergone an accretion outburst in 2015 September. The maximum brightness (DV > 4 mag) was reached in 2015 December and was maintained for several months. Since 2016
We report a ~38 ks X-ray observation of McNeils Nebula obtained with XMM on 2004 April 4. V1647 Ori, the young star in outburst illuminating McNeils Nebula, is detected with XMM and appears variable in X-rays. We investigate the hardness ratio variab
We have used INTEGRAL & RXTE data to investigate the timing properties of the source in correlation with its spectral states as defined by different positions in the colour-colour diagram. The source shows two distinct branches in the colour-colour d
Massive stars rarely show intrinsic X-ray variability. The only O-stars credited to be intrinsically variable are theta1 Ori C due to effects from magnetic confinement of its wind, and theta2 Ori A suspected of similar activity. Early Chandra observa