ترغب بنشر مسار تعليمي؟ اضغط هنا

A deep XMM-Newton serendipitous survey of a middle-latitude area

137   0   0.0 ( 0 )
 نشر من قبل Nicola La Palombara
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The radio quiet neutron star 1E1207.4-5209 has been the target of a 260 ks XMM-Newton observation, which yielded, as a by product, an harvest of about 200 serendipitous X-ray sources above a limiting flux of 2E-15 erg/cm2/s, in the 0.3-8 keV energy range. In view of the intermediate latitude of our field (b~10 deg), it comes as no surprise that the logN-logS distribution of our serendipitous sources is different from those measured either in the Galactic Plane or at high galactic latitudes. Here we shall concentrate on the analysis of the brightest sources in our sample, which unveiled a previously unknown Seyfert-2 galaxy.

قيم البحث

اقرأ أيضاً

216 - G. Novara 2009
The radio-quiet neutron star 1E1207.4-5209 has been the target of several XMM-Newton observations, with a total exposure of ~350 ks. The source is located at intermediate galactic latitude (b~10 degrees), i.e. in a sky region with an extremely intere sting mix of both galactic and extra-galactic X-ray sources. The aim of our work is to investigate the properties of both the intermediate-latitude galactic and extra-galactic X-ray source populations in the 1E1207.4-5209 field. We performed a coherent analysis of the whole XMM-Newton observation data set to build a catalogue of serendipitous X-ray sources detected with high confidence and to derive information on the source flux, spectra, and time variability. In addition, we performed a complete multi-band (UBVRI) optical coverage of the field with the Wide Field Imager (WFI) of the ESO/MPG 2.2m telescope (La Silla) to search for candidate optical counterparts to the X-ray sources, down to a V-band limiting magnitude of ~24.5. We detected a total of 144 serendipitous X-ray sources. Thanks to the refined X-ray positions and to the WFI observations, we found candidate optical counterparts for most of the X-ray sources in our compilation. For most of the brightest ones we proposed a likely classification based on both the X-ray spectra and the optical colours. Our results indicate that at intermediate galactic latitude the X-ray source population is dominated by the extra-galactic component, but with a significant contribution from the galactic component in the soft energy band, below 2 keV.
Aims: Pointed observations with XMM-Newton provide the basis for creating catalogues of X-ray sources detected serendipitously in each field. This paper describes the creation and characteristics of the 2XMM catalogue. Methods: The 2XMM catalogue has been compiled from a new processing of the XMM-Newton EPIC camera data. The main features of the processing pipeline are described in detail. Results: The catalogue, the largest ever made at X-ray wavelengths, contains 246,897 detections drawn from 3491 public XMM-Newton observations over a 7-year interval, which relate to 191,870 unique sources. The catalogue fields cover a sky area of more than 500 sq.deg. The non-overlapping sky area is ~360 sq.deg. (~1% of the sky) as many regions of the sky are observed more than once by XMM-Newton. The catalogue probes a large sky area at the flux limit where the bulk of the objects that contribute to the X-ray background lie and provides a major resource for generating large, well-defined X-ray selected source samples, studying the X-ray source population and identifying rare object types. The main characteristics of the catalogue are presented, including its photometric and astrometric properties .
Thanks to the large collecting area (3 x ~1500 cm$^2$ at 1.5 keV) and wide field of view (30 across in full field mode) of the X-ray cameras on board the European Space Agency X-ray observatory XMM-Newton, each individual pointing can result in the d etection of hundreds of X-ray sources, most of which are newly discovered. Recently, many improvements in the XMM-Newton data reduction algorithms have been made. These include enhanced source characterisation and reduced spurious source detections, refined astrometric precision, greater net sensitivity and the extraction of spectra and time series for fainter sources, with better signal-to-noise. Further, almost 50% more observations are in the public domain compared to 2XMMi-DR3, allowing the XMM-Newton Survey Science Centre (XMM-SSC) to produce a much larger and better quality X-ray source catalogue. The XMM-SSC has developed a pipeline to reduce the XMM-Newton data automatically and using improved calibration a new catalogue version has been produced from XMM-Newton data made public by 2013 Dec. 31 (13 years of data). Manual screening ensures the highest data quality. This catalogue is known as 3XMM. In the latest release, 3XMM-DR5, there are 565962 X-ray detections comprising 396910 unique X-ray sources. For the 133000 brightest sources, spectra and lightcurves are provided. For all detections, the positions on the sky, a measure of the quality of the detection, and an evaluation of the X-ray variability is provided, along with the fluxes and count rates in 7 X-ray energy bands, the total 0.2-12 keV band counts, and four hardness ratios. To identify the detections, a cross correlation with 228 catalogues is also provided for each X-ray detection. 3XMM-DR5 is the largest X-ray source catalogue ever produced. Thanks to the large array of data products, it is an excellent resource in which to find new and extreme objects.
Sky surveys produce enormous quantities of data on extensive regions of the sky. The easiest way to access this information is through catalogues of standardised data products. {em XMM-Newton} has been surveying the sky in the X-ray, ultra-violet, an d optical bands for 20 years. The {em XMM-Newton} Survey Science Centre has been producing standardised data products and catalogues to facilitate access to the serendipitous X-ray sky. Using improved calibration and enhanced software, we re-reduced all of the 14041 {em XMM-Newton} X-ray observations, of which 11204 observations contained data with at least one detection and with these we created a new, high quality version of the {em XMM-Newton} serendipitous source catalogue, 4XMM-DR9. 4XMM-DR9 contains 810795 detections down to a detection significance of 3 $sigma$, of which 550124 are unique sources, which cover 1152 degrees$^{2}$ (2.85%) of the sky. Filtering 4XMM-DR9 to retain only the cleanest sources with at least a 5 $sigma$ detection significance leaves 433612 detections. Of these detections, 99.6% have no pileup. Furthermore, 336 columns of information on each detection are provided, along with images. The quality of the source detection is shown to have improved significantly with respect to previo
85 - M. G. Watson , et al 2000
This paper describes the performance of XMM-Newton for serendipitous surveys and summarises the scope and potential of the XMM-Newton Serendipitous Survey. The role of the Survey Science Centre (SSC) in the XMM-Newton project is outlined. The SSCs fo llow-up and identification programme for the XMM-Newton serendipitous survey is described together with the presentation of some of the first results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا