ترغب بنشر مسار تعليمي؟ اضغط هنا

Slitless grism spectroscopy with the HST Advanced Camera for Surveys

85   0   0.0 ( 0 )
 نشر من قبل Anna Pasquali
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Pasquali




اسأل ChatGPT حول البحث

The Advanced Camera for Surveys on-board HST is equipped with a set of one grism and three prisms for low-resolution, slitless spectroscopy in the range 1150 Ang. to 10500 Ang. The G800L grism provides optical spectroscopy between 5500 Ang. and 1 micron with a mean dispersion of 39 Ang./pix and 24 Ang./pix (in the first spectral order) when coupled with the Wide Field and the High Resolution Channels, respectively. Given the lack of any on-board calibration lamps for wavelength and narrow band flat-fielding, the G800L grism can only be calibrated using astronomical targets. In this paper, we describe the strategy used to calibrate the grism in orbit, with special attention to the treatment of the field dependence of the grism flat-field, wavelength solution and sensitivity in both Channels.

قيم البحث

اقرأ أيضاً

62 - M. Sirianni 2005
We present the photometric calibration of the HST Advanced Camera for Surveys (ACS). We give here an overview of the performance and calibration of the 2 CCD cameras, the Wide Field Channel (WFC) and the High Resolution Channel (HRC), and a descripti on of the best techniques for reducing ACS CCD data. On-orbit observations of spectrophotometric standard stars have been used to revise the pre-launch estimate of the instrument response curves to best match predicted and observed count rates. Synthetic photometry has been used to determine zeropoints for all filters in 3 magnitude systems and to derive interstellar extinction values for the ACS photometric systems. Due to the CCD internal scattering of long wavelength photons, the width of the PSF increases significantly in the near-IR and the aperture correction for photometry with near-IR filters depends on the spectral energy distribution of the source. We provide encircled energy curves and a detailed recipe to correct for the latter effect. Transformations between the ACS photometric systems and the UBVRI and WFPC2 systems are presented. In general, two sets of transformations are available: 1 based on the observation of 2 star clusters; the other on synthetic photometry. We discuss the accuracy of these transformations and their sensitivity to details of the spectra being transformed. Initial signs of detector degradation due to the HST radiative environment are already visible. We discuss the impact on the data in terms of dark rate increase, charge transfer inefficiency, and hot pixel population.
HST is commonly thought of as an optical-IR imaging or UV-spectroscopy observatory. However, the advent of WFC3-IR made it possible to do slitless infrared spectroscopic surveys over an area significant for galaxy evolution studies (~0.15 deg^2). Sli tless infrared spectroscopy is uniquely possible from space due to the reduced background. Redshift surveys with WFC3-IR offer probes of the astrophysics of the galaxy population at z=1-3 from line features, and the true redshift and spatial distribution of galaxies, that cannot be done with photometric surveys alone. While HST slitless spectroscopy is low spectral resolution, its high multiplex advantage makes it competitive with future ground based IR spectrographs, its flux calibration is stable, and its high spatial resolution allows measuring the spatial extent of emission lines, which only HST can do currently for large numbers of objects. A deeper slitless IR spectroscopic survey over hundreds of arcmin^2 (eg one or more GOODS fields) is one of the remaining niches for large galaxy evolution studies with HST, and would produce a sample of thousands of spectroscopically confirmed galaxies at 1<z<3 to H=25 and beyond, of great interest to a large community of investigators. Finally, although JWST multislit spectroscopy will outstrip HST in resolution and sensitivity, I believe it is critical to have a spectroscopic sample in hand before JWST flies. This applies scientifically, to be prepared for the questions we want to answer with JWST, and observationally, because JWSTs lifetime is limited and a classic problem in targeted spectroscopy has been the turn-around time for designing surveys and for deciding which classes of objects to target. This white paper is released publicly to stimulate open discussion of future large HST programs.
The mutually complementary Euclid and Roman galaxy redshift surveys will use Halpha- and [OIII]-selected emission line galaxies as tracers of the large scale structure at $0.9 lesssim z lesssim 1.9$ (Halpha) and $1.5 lesssim z lesssim 2.7$ ([OIII]). It is essential to have a reliable and sufficiently precise knowledge of the expected numbers of Halpha-emitting galaxies in the survey volume in order to optimize these redshift surveys for the study of dark energy. Additionally, these future samples of emission-line galaxies will, like all slitless spectroscopy surveys, be affected by a complex selection function that depends on galaxy size and luminosity, line equivalent width, and redshift errors arising from the misidentification of single emission-line galaxies. Focusing on the specifics of the Euclid survey, we combine two slitless spectroscopic WFC3-IR datasets -- 3D-HST+AGHAST and the WISP survey -- to construct a Euclid-like sample that covers an area of 0.56 deg$^2$ and includes 1277 emission line galaxies. We detect 1091 ($sim$3270 deg$^{-2}$) Halpha+[NII]-emitting galaxies in the range $0.9leq z leq 1.6$ and 162 ($sim$440 deg$^{-2}$) [OIII]$lambda$5007-emitters over $1.5leq z leq 2.3$ with line fluxes $geq 2 times 10^{-16}$ erg s$^{-1}$ cm$^{-2}$. The median of the Halpha+[NII] equivalent width distribution is $sim$250r{A}, and the effective radii of the continuum and Halpha+[NII] emission are correlated with a median of $sim$0.38 and significant scatter ($sigma sim $0.2$-$0.35). Finally, we explore the prevalence of redshift misidentification in future Euclid samples, finding potential contamination rates of $sim$14-20% and $sim$6% down to $2times 10^{-16}$ and $6 times 10^{-17}$ erg s$^{-1}$ cm$^{-2}$, respectively, though with increased wavelength coverage these percentages drop to nearly zero.
We present $V$ and $I$ continuum images and H$alpha$+[N II] maps of nine early-type galaxies observed with the Wide Field Channel of the Advanced Camera for Surveys on the Hubble Space Telescope. Dust and ionized gas are detected in all galaxies. The optical nebulae are primarily concentrated on the nuclei and extend out to radii of a few hundred parsecs, in compact clumps, filaments, or disks. Two galaxies, NGC 6166 and NGC 6338, also possess diffuse, ionized filaments on kiloparsec scales. The ionized gas is entirely contained within the nuclear disks of ESO 208-G021, NGC 3078, and NGC 7720. In the radio-loud galaxy NGC 6166, emission-line filaments are detected along the radio lobes, possibly as a result of shock ionization. A wide range of ionized gas masses, $M_gapprox7times10^2-3times10^6$ $M_odot$, are calculated from the observed fluxes. Even in this small sample, the orientation of the ionized material correlates well with the major or minor axis of the galaxies, consistent with an external origin for the dust and gas.
We present an atlas of the central regions of 75 Seyfert galaxies imaged in the near-UV with the Advanced Camera for Surveys of the Hubble Space Telescope at an average resolution of ~10pc. These data complement archival high resolution data from the Space Telescope at optical and near-IR wavelengths, creating an extremely valuable dataset for astronomers with a broad range of scientific interests. Our goal is to investigate the nature of the near-UV light in these objects, its relation to the circumnuclear starburst phenomenon, and the connection of this to the evolution and growth of the galaxy bulge and central black hole. In this paper, we describe the near-UV morphology of the objects and characterize the near-UV emission. We estimate the size and the luminosity of the emitting regions and extract the luminosity profile. We also determine the presence of unresolved compact nuclei. In addition, the circumnuclear stellar cluster population is identified, and the contribution of the stellar clusters to the total light, at this wavelength, is estimated. The size of the sample allows us to draw robust statistical conclusions. We find that {Seyfert 1} galaxies are completely dominated by its bright and compact nucleus, that remains point-like at this resolution, while we find almost no unresolved nucleus in Seyfert 2. The Seyfert types 1 and 2 are quite segregated in an asymmetry vs compactness plot. Stellar clusters are found somewhat more frequently in Sy2 (in ~70% of the galaxies) than in Sy1 (~57%), and contribute more to the total light in Sy2, but this two differences seem to be mostly due to the large contribution of the compact nucleus in Sy1, as the luminosity distribution of the clusters is similar in both Sy types.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا