ترغب بنشر مسار تعليمي؟ اضغط هنا

Neon and Oxygen Abundances in M33

58   0   0.0 ( 0 )
 نشر من قبل Donald R. Garnett
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new spectroscopic observations of 13 H II regions in the Local Group spiral galaxy M33. The regions observed range from 1 to 7 kpc in distance from the nucleus. Of the 13 H II regions observed, the [O III] 4363 Angstrom line was detected in six regions. Electron temperatures were thus able to be determined directly from the spectra using the [O III] 4959,5007 A/4363 A line ratio. Based on these temperature measurements, oxygen and neon abundances and their radial gradients were calculated. For neon, a gradient of -0.016 +/- 0.017 dex/kpc was computed, which agrees with the Ne/H gradient derived previously from ISO spectra. A gradient of -0.012 +/- 0.011 dex/kpc was computed for O/H, much shallower than was derived in previous studies. The newly calculated O/H and Ne/H gradients are in much better agreement with each other, as expected from predictions of stellar nucleosynthesis. We examine the correlation between the WC/WN ratio and metallicity, and find that the new M33 abundances do not impact the observed correlation significantly. We also identify two new He II-emitting H II regions in M33, the first to be discovered in a spiral galaxy other than the Milky Way. In both cases the nebular He II emission is not associated with Wolf-Rayet stars. Therefore, caution is warranted in interpreting the relationship between nebular He II emission and Wolf-Rayet stars when both are observed in the integrated spectrum of an H II region.



قيم البحث

اقرأ أيضاً

To revisit the long-standing problem of possible inconsistency concerning the oxygen composition in the current galactic gas and in the solar atmosphere (i.e., the former being appreciably lower by ~0.3 dex) apparently contradicting the galactic chem ical evolution, we carried out oxygen abundance determinations for 64 mid- through late-B stars by using the O I 6156-8 lines while taking into account the non-LTE effect, and compared them with the solar O abundance established in the same manner. The resulting mean oxygen abundance was <A(O)> = 8.71 (+/- 0.06), which means that [O/H] (star-Sun differential abundance) is ~-0.1, the difference being less significant than previously thought. Moreover, since the 3D correction may further reduce the reference solar oxygen abundance (8.81) by ~0.1 dex, we conclude that the photospheric O abundances of these B stars are almost the same as that of the Sun. We also determined the non-LTE abundances of neon for the sample B stars from Ne I 6143/6163 lines to be <A(Ne)> = 8.02 (+/- 0.09), leading to the Ne-to-O ratio of ~0.2 consistent with the recent studies. This excludes a possibility of considerably high Ne/O ratio once proposed as a solution to the confronted solar model problem.
The collapse of degenerate oxygen-neon cores (i.e., electron-capture supernovae or accretion-induced collapse) proceeds through a phase in which a deflagration wave (flame) forms at or near the center and propagates through the star. In models, the a ssumed speed of this flame influences whether this process leads to an explosion or to the formation of a neutron star. We calculate the laminar flame speeds in degenerate oxygen-neon mixtures with compositions motivated by detailed stellar evolution models. These mixtures include trace amounts of carbon and have a lower electron fraction than those considered in previous work. We find that trace carbon has little effect on the flame speeds, but that material with electron fraction $Y_e approx 0.48-0.49$ has laminar flame speeds that are $approx 2$ times faster than those at $Y_e = 0.5$. We provide tabulated flame speeds and a corresponding fitting function so that the impact of this difference can be assessed via full star hydrodynamical simulations of the collapse process.
Using spectroscopic data presented in Magrini et al. (2003), we have analyzed with the photoionization code CLOUDY 94.00 (Ferland et al. 1998) 11 Planetary Nebulae belonging to the spiral galaxy M 33. Central star temperatures and nebular parameters have been determined. In particular the chemical abundances of He/H, O/H, N/H, Ar/H, and S/H have been measured and compared with values obtained via the Ionization Correction Factors (ICFs) method, when available. Chemical abundance relationships have been investigated; in particular, a correlation between N/H and N/O similar to the Galactic one (Henry 1989), and a feeble anti-correlation between O/H and N/O have been found. A gradient in O/H across the disc of M~33 is indicatively consistent with the one found from HII regions in this galaxy (Vilchez et al 1988). Further studies in the more external parts of M~33 are however needed to ascertain this point. The present result shows that oxygen and helium abundances (with lower accuracy also nitrogen, argon and sulphur) can be actually estimated from the brightest PNe of a galaxy, even if the electron temperature cannot be measured. We also found that the oxygen abundance is quite independent of the absolute magnitude of the PN and consequently the brightest PNe are representative of the whole PN population. This represents an important tool to measure the metallicity of galaxies at the time of the formation of PNe progenitors.
The positive correlation between planet detection rate and host star iron abundance lends strong support to the core accretion theory of planet formation. However, iron is not the most significant mass contributor to the cores of giant planets. Since giant planet cores are thought to grow from silicate grains with icy mantles, the likelihood of gas giant formation should depend heavily on the oxygen and silicon abundance of the planet formation environment. Here we compare the silicon and oxygen abundances of a set of 76 planet hosts and a control sample of 80 metal-rich stars without any known giant planets. Our new, independent analysis was conducted using high resolution, high signal-to-noise data obtained at McDonald Observatory. Because we do not wish to simply reproduce the known planet-metallicity correlation, we have devised a statistical method for matching the underlying [Fe/H] distributions of our two sets of stars. We find a 99% probability that planet detection rate depends on the silicon abundance of the host star, over and above the observed planet-metallicity correlation. We do not detect any such correlation for oxygen. Our results would thus seem to suggest that grain nucleation, rather than subsequent icy mantle growth, is the important limiting factor in forming giant planets via core accretion. Based on our results and interpretation, we predict that planet detection should correlate with host star abundance for refractory elements responsible for grain nucleation and that no such trends should exist for the most abundant volatile elements responsible for icy mantle growth.
135 - C. Lunardini 2008
We discuss the flavor conversion of neutrinos from core collapse supernovae that have oxygen-neon-magnesium (ONeMg) cores. Using the numerically calculated evolution of the star up to 650 ms post bounce, we find that, for the normal mass hierarchy, t he electron neutrino flux in a detector shows signatures of two typical features of an ONeMg-core supernova: a sharp step in the density profile at the base of the He shell and a faster shock wave propagation compared to iron core supernovae. Before the shock hits the density step (t ~ 150 ms), the survival probability of electron neutrinos is about 0.68, in contrast to values of 0.32 or less for an iron core supernova. The passage of the shock through the step and its subsequent propagation cause a decrease of the survival probability and a decrease of the amplitude of oscillations in the Earth, reflecting the transition to a more adiabatic propagation inside the star. These changes affect the lower energy neutrinos first; they are faster and more sizable for larger theta_13. They are unique of ONeMg-core supernovae, and give the possibility to test the speed of the shock wave. The time modulation of the Earth effect and its negative sign at the neutronization peak are the most robust signatures in a detector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا