ترغب بنشر مسار تعليمي؟ اضغط هنا

Detailed spectroscopic analysis of the Trapezium cluster stars inside the Orion nebula

105   0   0.0 ( 0 )
 نشر من قبل Sergio Sim\\'on-D\\'iaz
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of a spectroscopic analysis of the Trapezium cluster stars inside the Orion Nebula. The rotational velocities have been obtained using Fourier analysis method, finding agreement with values derived from the usual method, based on linewidth measurements. The rotational velocity derived for theta 1 Ori C through this method is consistent with the variability of some of its spectral features that have a period of 15.42 days. By means of the fit of H, HeI and HeII observed profiles with FASTWIND synthetic profiles, stellar parameters and wind characteristics have been derived. This methodology let us estimate the errors associated with these parameters. It is found that macroturbulence effects have to be included for a good fit to the HeI-II lines in the spectrum of theta 1 Ori C. By means of a very accurate study, oxygen abundances have been derived for the three B0.5V stars theta 1 Ori A, D and theta 2 Ori B. Final abundances are consistent with the nebular gas-phase results presented in Esteban et al. (2004) and are lower than those given by Cunha and Lambert (1994). Our results suggest a lower dust depletion factor of oxygen than previous estimations for the Orion nebula.



قيم البحث

اقرأ أيضاً

We report new spectral types or spectral classification constraints for over 600 stars in the Orion Nebula Cluster (ONC) based on medium resolution R~ 1500-2000 red optical spectra acquired using the Palomar 200 and Kitt Peak 3.5m telescopes. Spectra l types were initially estimated for F, G, and early K stars from atomic line indices while for late K and M stars, constituting the majority of our sample, indices involving TiO and VO bands were used. To ensure proper classification, particularly for reddened, veiled, or nebula-contaminated stars, all spectra were then visually examined for type verification or refinement. We provide an updated spectral type table that supersedes Hillenbrand (1997), increasing the percentage of optically visible ONC stars with spectral type information from 68% to 90%. However, for many objects, repeated observations have failed to yield spectral types primarily due to the challenges of adequate sky subtraction against a bright and spatially variable nebular background. The scatter between our new and our previously determined spectral types is approximately 2 spectral sub-classes. We also compare our grating spectroscopy results with classification based on narrow-band TiO filter photometry from Da Rio et al. (2012, finding similar scatter. While the challenges of working in the ONC may explain much of the spread, we highlight several stars showing significant and unexplained bona fide spectral variations in observations taken several years apart; these and similar cases could be due to a combination of accretion and extinction changes. Finally, nearly 20% of ONC stars exhibit obvious Ca II triplet emission indicative of strong accretion.
We report on a high-spatial-resolution survey for binary stars in the periphery of the Orion Nebula Cluster, at 5 - 15 arcmin (0.65 - 2 pc) from the cluster center. We observed 228 stars with adaptive optics systems, in order to find companions at se parations of 0.13 - 1.12 (60 - 500 AU), and detected 13 new binaries. Combined with the results of Petr (1998), we have a sample of 275 objects, about half of which have masses from the literature and high probabilities to be cluster members. We used an improved method to derive the completeness limits of the observations, which takes into account the elongated point spread function of stars at relatively large distances from the adaptive optics guide star. The multiplicity of stars with masses >2 M_sun is found to be significantly larger than that of low-mass stars. The companion star frequency of low-mass stars is comparable to that of main-sequence M-dwarfs, less than half that of solar-type main-sequence stars, and 3.5 to 5 times lower than in the Taurus-Auriga and Scorpius-Centaurus star-forming regions. We find the binary frequency of low-mass stars in the periphery of the cluster to be the same or only slightly higher than for stars in the cluster core (<3 arcmin from theta1C Ori). This is in contrast to the prediction of the theory that the low binary frequency in the cluster is caused by the disruption of binaries due to dynamical interactions. There are two ways out of this dilemma: Either the initial binary frequency in the Orion Nebula Cluster was lower than in Taurus-Auriga, or the Orion Nebula Cluster was originally much denser and dynamically more active.
In this paper, we present a study of the Trapezium cluster in Orion. We analyze flux-calibrated VLT/MUSE spectra of 361 stars to simultaneously measure the spectral types, reddening, and the optical veiling due to accretion. We find that the extincti on law from Cardelli et al. (1989) with a total-to-selective extinction value of $R_{rm V}=$5.5 is more suitable for this cluster. For 68% of the sample the new spectral types are consistent with literature spectral types within 2 subclasses, but as expected, we derive systematically later types than the literature by one to two subclasses for the sources with significant accretion levels. Here we present an improved Hertzsprung-Russell (H-R) diagram of the Trapezium cluster, in which the contamination by optical veiling on spectral types and stellar luminosities has been properly removed. A comparison of the locations of the stars in the H-R diagram with the non-magnetic and magnetic pre-main sequence evolutionary tracks indicates an age of 1--2~Myr. The magnetic pre-main sequence evolutionary tracks can better explain the luminosities of the low-mass stars. In the H-R diagram, the cluster exhibits a large luminosity spread ($sigma$(Log~$L_{star}/L_{odot})sim$0.3). By collecting a sample of 14 clusters/groups with different ages, we find that the luminosity spread tends to be constant ($sigma$(Log~$L_{star}/L_{odot})sim$0.2--0.25) after 2~Myr, which suggests that age spread is not the main cause of the spread. There are $sim$0.1~dex larger luminosity spreads for the younger clusters, e.g., the Trapezium cluster, than the older clusters, which can be explained by the starspots, accretion history and circumstellar disk orientations.
407 - A. Maggio 2007
Following the Chandra Orion Ultradeep Project (COUP) observation, we have studied the chemical composition of the hot plasma in a sample of 146 X-ray bright pre-main sequence stars in the Orion Nebula Cluster. We report measurements of individual ele ment abundances for a subsample of 86 slightly-absorbed and bright X-ray sources, using low resolution X-ray spectra obtained from the Chandra ACIS instrument. The X-ray emission originates from a plasma with temperatures and elemental abundances very similar to those of active coronae in older stars. A clear pattern of abundances vs. First Ionization Potential (FIP) is evident if solar photospheric abundances are assumed as reference. The results are validated by extensive simulations. The observed abundance distributions are compatible with a single pattern of abundances for all stars, although a weak dependence on flare loop size may be present. The abundance of calcium is the only one which appears to vary substantially between stars, but this quantity is affected by relatively large uncertainties. The ensemble properties of the X-ray bright COUP sources confirm that the iron in the emitting plasma is underabundant with respect to both the solar composition and to the average stellar photospheric values. Comparison of the present plasma abundances with those of the stellar photospheres and those of the gaseous component of the nebula, indicates a good agreement for all the other elements with available measurements, and in particular for the high-FIP elements (Ne, Ar, O, and S) and for the low-FIP element Si. We conclude that there is evidence of a significant chemical fractionation effect only for iron, which appears to be depleted by a factor 1.5--3 with respect to the stellar composition.
The Chandra High Energy Transmission Gratings (HETG) Orion Legacy Project (HOLP) is the first comprehensive set of observations of a very young massive stellar cluster which provides high resolution X-ray spectra of very young stars over a wide mass range (0.7 - 2.3 Msun). In this paper, we focus on the six brightest X-ray sources with T Tauri stellar counterparts which are well-characterized at optical and infra-red wavelengths. All stars show column densities which are substantially smaller than expected from optical extinction indicating that the sources are located on the near side of the cluster with respect to the observer as well as that these stars are embedded in more dusty environments. Stellar X-ray luminosities are well above $10^{31}$ erg/s, in some cases exceeding $10^{32}$ erg/s for a substantial amount of time. The stars during these observations show no flares but are persistently bright. The spectra can be well fit with two temperature plasma components of 10 MK and 40 MK, of which the latter dominates the flux by a ratio 6:1 on average. The total EMs range between 3 - 8$times10^{54}$ cm$^{-3}$ and are comparable to active coronal sources. Limits on the forbidden to inter-combination line ratios in the He-Like K-shell lines show that we observe a predominantely optically thin plasma with electron densities below $10^{12}$ cm$^{-3}$. Observed abundances compare well with active coronal sources underlying the coronal nature of these sources. The surface flux in this sample of 0.6 to 2.3 Msun classical T Tauri stars shows that coronal activity and possibly coronal loop size increase significantly between ages 0.1 to 10 Myrs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا