ترغب بنشر مسار تعليمي؟ اضغط هنا

The evolution of actively star forming galaxies in the mid infrared

45   0   0.0 ( 0 )
 نشر من قبل Olga Vega
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we analyze the evolution of actively star forming galaxies in the mid-infrared (MIR). This spectral region, characterized by continuum emission by hot dust and by the presence of strong emission features generally ascribed to polycyclic aromatic hydrocarbon (PAH) molecules, is the most strongly affected by the heating processes associated with star formation and/or active galactic nuclei (AGN). Following the detailed observational characterization of galaxies in the MIR by ISO, we have updated the modelling of this spectral region in our spectro-photometric model GRASIL (Silva et al. 1998). In the diffuse component we have updated the treatment of PAHs according to the model by Li & Draine (2001). As for the dense phase of the ISM associated with the star forming regions, the molecular clouds, we strongly decrease the abundance of PAHs as compared to that in the cirrus, basing on the observational evidences of the lack or weakness of PAH bands close to the newly formed stars, possibly due to the destruction of the molecules in strong UV fields. The robustness of the model is checked by fitting near infrared to radio broad band spectra and the corresponding detailed MIR spectra of a large sample of galaxies (Lu et al. 2003), at once. With this model, we have analyzed the larger sample of actively star forming galaxies by Dale et al. (2000). We show that the observed trends of galaxies in the ISO-IRAS-Radio color-color plots can be interpreted in terms of different evolutionary phases of star formation activity, and the consequent different dominance in the spectral energy distribution (SED) of the diffuse or dense phase of the ISM.


قيم البحث

اقرأ أيضاً

We present low-resolution, rest-frame ~ 5 - 12 micron Spitzer/IRS spectra of two lensed z ~ 2 UV-bright star-forming galaxies, SDSS J120602.09+514229.5 and SDSS J090122.37+181432.3. Using the magnification boost from lensing, we are able to study the physical properties of these objects in greater detail than is possible for unlensed systems. In both targets, we detect strong PAH emission at 6.2, 7.7, and 11.3 microns, indicating the presence of vigorous star formation. For J1206, we find a steeply rising continuum and significant [S IV] emission, suggesting that a moderately hard radiation field is powering continuum emission from small dust grains. The strength of the [S IV] emission also implies a sub-solar metallicity of ~ 0.5 Z_{Sun}, confirming published rest-frame optical measurements. In J0901, the PAH lines have large rest-frame equivalent widths (> 1 micron) and the continuum rises slowly with wavelength, suggesting that any AGN contribution to L_{IR} is insignificant, in contrast to the implications of optical emission-line diagnostics. Using [O III] line flux as a proxy for AGN strength, we estimate that the AGN in J0901 provides only a small fraction of its mid-infrared continuum flux. By combining the detection of [Ar II] with an upper limit on [Ar III] emission, we infer a metallicity of > 1.3 Z_{Sun}. This work highlights the importance of combining rest-frame optical and mid-IR spectroscopy in order to understand the detailed properties of star-forming galaxies at high redshift.
We discuss the clustering properties of galaxies with signs of ongoing star formation detected by the Spitzer Space Telescope at 24mum band in the SWIRE Lockman Hole field. The sample of mid-IR-selected galaxies includes ~20,000 objects detected abov e a flux threshold of S24mum=310muJy. We adopt optical/near-IR color selection criteria to split the sample into the lower-redshift and higher-redshift galaxy populations. We measure the angular correlation function on scales of theta=0.01-3.5 deg, from which, using the Limber inversion along with the redshift distribution established for similarly selected source populations in the GOODS fields (Rodighiero et al. 2010), we obtain comoving correlation lengths of r0=4.98+-0.28 h^-1 Mpc and r0 =8.04+-0.69 h^-1 Mpc for the low-z (<z>=0.7) and high-z (<z>=1.7) subsamples, respectively. Comparing these measurements with the correlation functions of dark matter halos identified in the Bolshoi cosmological simulation (Klypin et al. 2011}, we find that the high-redshift objects reside in progressively more massive halos reaching Mtot>3e12 h^-1 Msun, compared to Mtot>7e11 h^-1 Msun for the low-redshift population. Approximate estimates of the IR luminosities based on the catalogs of 24mum sources in the GOODS fields show that our high-z subsample represents a population of distant ULIRGs with LIR>10^12Lsun, while the low-z subsample mainly consists of LIRGs, LIR~10^11Lsun. The comparison of number density of the 24mum selected galaxies and of dark matter halos with derived minimum mass Mtot shows that only 20% of such halos may host star-forming galaxies.
Identifying galaxy clustering at high redshift (i.e. z > 1) is essential to our understanding of the current cosmological model. However, at increasing redshift, clusters evolve considerably in star-formation activity and so are less likely to be ide ntified using the widely-used red sequence method. Here we assess the viability of instead identifying high redshift clustering using actively star-forming galaxies (SMGs associated with over-densities of BzKs/LBGs). We perform both a 2- and 3-D clustering analysis to determine whether or not true (3D) clustering can be identified where only 2D data are available. As expected, we find that 2D clustering signals are weak at best and inferred results are method dependant. In our 3D analysis, we identify 12 SMGs associated with an over-density of galaxies coincident both spatially and in redshift - just 8% of SMGs with known redshifts in our sample. Where an SMG in our target fields lacks a known redshift, their sightline is no more likely to display clustering than blank sky fields; prior redshift information for the SMG is required to identify a true clustering signal. We find that the strength of clustering in the volume around typical SMGs, while identifiable, is not exceptional. However, we identify a small number of highly clustered regions, all associated with an SMG. The most notable of these, surrounding LESSJ033336.8-274401, potentially contains an SMG, a QSO and 36 star-forming galaxies (a > 20sig over-density) all at z~1.8. This region is highly likely to represent an actively star-forming cluster and illustrates the success of using star-forming galaxies to select sites of early clustering. Given the increasing number of deep fields with large volumes of spectroscopy, or high quality and reliable photometric redshifts, this opens a new avenue for cluster identification in the young Universe.
94 - T. Diaz-Santos 2010
We present a high spatial (diffraction-limited) resolution (~0.3) mid-infrared (MIR) spectroscopic study of the nuclei and star-forming regions of 4 local luminous infrared galaxies (LIRGs) using T-ReCS on the Gemini South telescope. We investigate t he spatial variations of the features seen in the N-band spectra of LIRGs on scales of ~100 pc, which allow us to separate the AGN emission from that of the star formation (SF). We compare our Gemini T-ReCS nuclear and integrated spectra of LIRGs with those obtained with Spitzer IRS. The 9.7um silicate absorption feature is weaker in the nuclei of the LIRGs than in the surrounding regions. This is probably due to the either clumpy or compact environment of the central AGN or young, nuclear starburst. We find that the [NeII] luminosity surface density is tightly and directly correlated with that of Pa-alpha for the LIRG star-forming regions (slope of 1.00+-0.02). Although the 11.3um PAH feature shows also a trend with Pa-alpha, this is not common for all the regions. We also find that the [NeII]Pa-alpha ratio does not depend on the Pa-alpha equivalent width (EW), i.e., on the age of the ionizing stellar populations, suggesting that, on the scales probed here, the [NeII] emission line is a good tracer of the SF activity in LIRGs. On the other hand, the 11.3um PAHPa-alpha ratio increases for smaller values of the Pa-alpha EW (increasing ages), indicating that the 11.3um PAH feature can also be excited by older stars than those responsible for the Pa-alpha emission. Additional high spatial resolution observations are essential to investigate, in a statistical way, the star formation in local LIRGs at the smallest scales and to probe ultimately whether they share the same physical properties as high-z LIRGs, ULIRGs and submillimiter galaxies.
We present mid-infrared (MIR) luminosity functions (LFs) of local star-forming (SF) galaxies in the AKARI NEP-Wide Survey field. In order to derive more accurate luminosity function, we used spectroscopic sample only. Based on the NEP-Wide point sour ce catalogue containing a large number of infrared (IR) sources distributed over the wide (5.4 sq. deg.) field, we incorporated the spectroscopic redshift data for about 1790 selected targets obtained by optical follow-up surveys with MMT/Hectospec and WIYN/Hydra. The AKARI continuous 2 to 24 micron wavelength coverage as well as photometric data from optical u band to NIR H-band with the spectroscopic redshifts for our sample galaxies enable us to derive accurate spectral energy distributions (SEDs) in the mid-infrared. We carried out SED fit analysis and employed 1/Vmax method to derive the MIR (8, 12, and 15 micron rest-frame) luminosity functions. We fit our 8 micron LFs to the double power-law with the power index of alpha= 1.53 and beta= 2.85 at the break luminosity. We made extensive comparisons with various MIR LFs from several literatures. Our results for local galaxies from the NEP region are generally consistent with other works for different fields over wide luminosity ranges. The comparisons with the results from the NEP-Deep data as well as other LFs imply the luminosity evolution from higher redshifts towards the present epoch.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا