ﻻ يوجد ملخص باللغة العربية
Faber-Jackson and Tully-Fisher scaling relations for elliptical and spiral galaxy samples up to z=1 provide evidence for a differential behaviour of galaxy evolution with mass. In compliance with the downsizing scenario, the stellar populations of less massive galaxies display a stronger evolution than the more massive ones. For spirals, this may be attributed to a suppressed star formation efficiency in small dark matter halos. For ellipticals, star formation must have been negligible at least during the past ~4Gyr in all environments.
In their evolution, star-forming galaxies are known to follow scaling relations between some fundamental physical quantities, such as the mass-metallicity and the main sequence relations. We aim at studying the evolution of galaxies that, at a given
In recent years the global seismic scaling relations for the frequency of maximum power and for the large frequency separation have caught the attention of various fields of astrophysics. With the exquisite photometry of textit{Kepler}, the uncertain
We construct a large data set of global structural parameters for 1300 field and cluster spiral galaxies and explore the joint distribution of luminosity L, optical rotation velocity V, and disk size R at I- and 2MASS K-bands. The I- and K-band veloc
X-ray observations of an entropy floor in nearby groups and clusters of galaxies offer evidence that important non-gravitational processes, such as radiative cooling and/or preheating, have strongly influenced the evolution of the intracluster medium
To study the dust evolution in the cosmological structure formation history, we perform a smoothed particle hydrodynamic simulation with a dust enrichment model in a cosmological volume. We adopt the dust evolution model that represents the grain siz