ترغب بنشر مسار تعليمي؟ اضغط هنا

Three Spectral States of the Disk X-Ray Emission of the Black-Hole Candidate 4U 1630-47

67   0   0.0 ( 0 )
 نشر من قبل Yasushi Fukazawa
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yukiko Abe




اسأل ChatGPT حول البحث

We studied a time history of X-ray spectral states of a black-hole candidate, 4U 1630-47, utilizing data from a number of monitoring observations with the Rossi X-Ray Timing Explorer over 1996--2004. These observations covered five outbursts of 4U 1630-47, and most of the data recorded typical features of the high/soft states. We found that the spectra in the high/soft states can be further classified into three states. The first spectral state is explained by a concept of the standard accretion disk picture. The second state appears in the so-called very high state, where a dominant hard component is seen and the disk radius apparently becomes too small. These phenomena are explained by the effect of inverse Compton scattering of disk photons, as shown by Kubota, Makishima, & Ebisawa (2001, ApJ, 560, L147) for GRO J1655-40. The third state is characterized in such a way that the disk luminosity varies in proportion to $T_{rm in}^2$, rather than $T_{rm in}^4$, where $T_{rm in}$ is the inner-disk temperature. This state is suggested to be an optically-thick and advection-dominated slim disk, as suggested by Kubota & Makishima (2004, ApJ, 601, 428) for XTE J1550-564. The second and third states appear, with good reproducibility, when $T_{rm in}$ and the total X-ray luminosity are higher than 1.2 keV and $sim2.5times10^{38}(D/10quad{rm kpc})^2l eft[cos{theta}/(1/sqrt{3})]^{-1}$ erg s$^{-1}$, respectively, where $D$ is the distance to the object and $theta$ is the inclination angle to the disk. The present results suggest that these three spectral states commonly appear among black-hole binaries under high accretion rates.



قيم البحث

اقرأ أيضاً

Accreting black holes are known to power relativistic jets, both in stellar-mass binary systems and at the centres of galaxies. The power carried away by the jets, and hence the feedback they provide to their surroundings, depends strongly on their c omposition. Jets containing a baryonic component should carry significantly more energy than electron-positron jets. While energetic considerations and circular polarisation measurements have provided conflicting circumstantial evidence for the presence or absence of baryons, the only system in which baryons have been unequivocally detected in the jets is the X-ray binary SS 433. Here we report the detection of Doppler-shifted X-ray emission lines from a more typical black hole candidate X-ray binary, 4U1630-47, coincident with the reappearance of radio emission from the jets of the source. We argue that these lines arise in a jet with velocity 0.66c, thereby establishing the presence of baryons in the jet. Such baryonic jets are more likely to be powered by the accretion disc rather than the spin of the black hole, and if the baryons can be accelerated to relativistic speeds, should be strong sources of gamma rays and neutrino emission.
We re-analyzed SUZAKU data of the black hole candidate 4U 1630-472 being in the high/soft state. We show that the continuum X-ray spectrum of 4U 1630-472 with iron absorption lines can be satisfactorily modeled by the spectrum from an accretion disk atmosphere. Absorption lines of highly ionized iron originating in hot accretion disk atmosphere can be an alternative or complementary explanation to the wind model usually favored for these type of sources. We model continuum and line spectra using a single model. Absorption lines of highly ionized iron can origin in upper parts of the disk atmosphere which is intrinsically hot due to high disk temperature. Iron line profiles computed with natural, thermal and pressure broadenings match very well observations. We showed that the accretion disk atmosphere can effectively produce iron absorption lines observed in 4U 1630-472 spectrum. Absorption line arising in accretion disk atmosphere is the important part of the observed line profile, even if there are also other mechanisms responsible for the absorption features. Nevertheless, the wind theory can be an artifact of the fitting procedure, when the continuum and lines are fitted as separate model components.
Recent XMM-Newton observations of the black-hole candidate 4U 1630-47 during the 2012 outburst revealed three relativistically Doppler-shifted emission lines that were interpreted as arising from baryonic matter in the jet of this source. Here we rea nalyse those data and find an alternative model that, with less free parameters than the model with Doppler-shifted emission lines, fits the data well. In our model we allow the abundance of S and Fe in the interstellar material along the line of sight to the source to be non solar. Among other things, this significantly impacts the emission predicted by the model at around 7.1 keV, where the edge of neutral Fe appears, and renders the lines unnecessary. The fits to all the 2012 XMM-Newton observations of this source require a moderately broad emission line at around 7 keV plus several absorption lines and edges due to highly ionised Fe and Ni, which reveal the presence of a highly-ionised absorber close to the source. Finally, our model also fits well the observations in which the lines were detected when we apply the most recent calibration files, whereas the model with the three Doppler-shifted emission lines does not.
We present the analysis of X-ray observations of the black hole binary 4U~1630$-$47 using relativistic reflection spectroscopy. We use archival data from the RXTE, Swift, and NuSTAR observatories, taken during different outbursts of the source betwee n $1998$ and $2015$. Our modeling includes two relatively new advances in modern reflection codes: high-density disks, and returning thermal disk radiation. Accretion disks around stellar-mass black holes are expected to have densities well above the standard value assumed in traditional reflection models (i.e., $n_{rm e}sim10^{15}~{rm cm^{-3}}$). New high-density reflection models have important implications in the determination of disk truncation (i.e., the disk inner radius). This is because one must retain self-consistency in the irradiating flux and corresponding disk ionization state, which is a function of disk density and system geometry. We find the disk density is $n_{rm e}ge10^{20}~{rm cm^{-3}}$ across all spectral states. This density, combined with our constraints on the ionization state of the material, implies an irradiating flux impinging on the disk that is consistent with the expected theoretical estimates. Returning thermal disk radiation -- the fraction of disk photons which bend back to the disk producing additional reflection components -- is expected predominantly in the soft state. We show that returning radiation models indeed provide a better fit to the soft state data, reinforcing previous results which show that in the soft state the irradiating continuum may be blackbody emission from the disk itself.
124 - Fiamma Capitanio 2015
We report on the analysis of the data collected by Swift, INTEGRAL and RXTE of the Black Hole Candidate (BHC) 4U 1630-47 during 3 consecutive outbursts occurred in 2006, 2008 and 2010, respectively. We show that, although a similar spectral and tempo ral behaviour in the energy range between 2-10 keV, these 3 outbursts present pronounced differences above 20 keV. In fact, the 2010 outburst extends at high energies without any detectable cut-off until 150-200 keV, while the other two previous outbursts, occurred on 2006 and 2008, are not detected at all above 20 keV. Moreover, the 2008 outburst does not show any detectable hard state in its final phases and even during the 2010 outburst, the final hard state shows some peculiarities rarely observed in other BHC. We also investigate on the peculiar huge variation of 4U 1630-47 hydrogen column density (N$_{H}$) reported in the literature using the Swift/XRT data. In fact this instrument is one of the most suitable for this purpose thanks to its lower energy coverage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا