ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton discovery of soft X-ray absorption in the high-z superluminous Blazar RBS 315

49   0   0.0 ( 0 )
 نشر من قبل Enrico Piconcelli
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the analysis and the results of a 20 ks XMM-Newton observation of the extremely X-ray loud (L_X ~ 5 x 10^{47} erg/s) flat-spectrum radio quasar RBS 315 at a redshift of 2.69. This EPIC observation has allowed us to strongly constrain the slope of the continuum (Gamma = 1.23+/-0.01) as well as to discover the presence of a sharp drop below ~ 2 keV in its spectrum. Such a flat photon index and the huge luminosity suggest that the X-ray emission is due to the low energy tail of the Comptonized spectrum, produced from plasma in a relativistic jet oriented close to our line of sight. Even though the hypothesis of a break in the continuum cannot be completely discarded as an explanation of the soft X-ray cutoff, the presence of intrinsic absorption appears more plausible. Spectral fits with cold (Nh(z) = 1.62+/-0.09 x 10^{22} cm^{-2}) and lukewarm (Nh(z) = 2.2^{+0.9}_{-0.3} x 10^{22} cm^{-2}; xi = 15^{+38}_{-12} erg/cm^{2}/s) absorbers are statistically indistinguishable. Remarkably, our results are very similar to those reported so far for other absorbed high-z Blazars observed by XMM-Newton. The existence of this ``homogeneous class of jet-dominated superluminous obscured QSOs at high z therefore could be important in the context of the formation and cosmological evolution of radio-loud objects


قيم البحث

اقرأ أيضاً

X-ray absorption of high-redshift quasars is enigmatic, because it remains unclear where in the universe the absorbing gas is. If absorption occurs near the high-z host, it could help us understand early stages of galaxy formation. If it is in the in tergalactic medium (IGM), it provides a unique way to probe this elusive baryon component. We report on observations of one of the brightest X-ray sources at a high redshift, RBS 315 (z=2.69). Despite several previous analyses, no definite conclusion as to the source of the curvature in its spectrum, whether absorption or intrinsic, could be reached. We present observations by XMM-Newton (EPIC and RGS) as well as NuSTAR and Swift/XRT. The XMM-Newton spectra of this source are of unprecedented quality. A purely statistical analysis of the CCD spectra yields no clear results - the spectrum is as likely to be photo-electrically absorbed as it is to be curved at the source, and no constraint on the position of the absorber can be obtained. Assuming absorption governs the spectral curvature, the lack of absorption lines in the grating spectra indicates the absorber is not well localized in redshift space, and could be dispersed over the cosmological scales of the IGM. Intrinsic curvature, however, can not be unambiguously ruled out.
We report on two XMM-Newton observations of the low-mass X-ray binary X 1254-690. During an XMM-Newton observation of the low-mass X-ray binary in 2001 January a deep X-ray dip was seen while in a second observation one year later no dips were eviden t. The 0.5-10 keV EPIC spectra from both non-dipping intervals are very similar being modeled by a disk-blackbody and a power-law continuum with additional structure around 1 keV and narrow absorption features at 7.0 keV and 8.2 keV which are identified with the K alpha and K beta absorption lines of Fe XXVI. The low-energy structure may be modeled as a 175 eV (sigma) wide emission line at ~0.95 keV. This feature is probably the same structure that was modeled as an absorption edge in an earlier BeppoSAX observation. The absorption line properties show no obvious dependence on orbital phase and are similar in both observations suggesting that the occurrence of such features is not directly related to the presence of dipping activity. Narrow Fe absorption features have been observed from the two superluminal jet sources GRO J1655-40 and GRS 1915+105, and the four low-mass X-ray binaries GX 13+1, MXB 1658-298, X 1624-490 and X 1254-690. Since the latter 3 sources are dipping sources, which are systems viewed close to the accretion disk plane, and the two microquasars are thought to be viewed at an inclination of ~70 degrees, this suggests that these features are more prominent when viewed at high-inclination angles. This, together with the lack of any orbital dependence, implies a cylindrical geometry for the absorbing material.
64 - L. Sidoli 2001
We report the discovery of narrow X-ray absorption lines from the low-mass X-ray binary MXB1659-298 during an XMM-Newton observation in 2001 February. The 7.1 hr orbital cycle is clearly evident with narrow X-ray eclipses preceded by intense dipping activity. A sinusoid-like OM $B$-band modulation with a peak-to-peak modulation of 0.5 magnitude and a minimum coincident with the X-ray eclipse is visible. EPIC and RGS spectra reveal the presence of narrow resonant absorption features identified with OVIII 1s-2p, 1s-3p and 1s-4p, NeX 1s-2p, FeXXV 1s-2p, and FeXXVI 1s-2p transitions, together with a broad Fe emission feature at ~6.5 keV. The EWs of the Fe absorption features show no obvious dependence on orbital phase, even during dipping intervals. Previously, the only X-ray binaries known to exhibit narrow X-ray absorption lines were two superluminal jet sources and it had been suggested that these features are related to the jet formation mechanism. This now appears unlikely, and instead their presence may be related to the viewing angle of the system. The MXB1659-298 0.6--12 keV continuum is modeled using absorbed cutoff power-law and blackbody components. During dips the blackbody is more strongly absorbed than the power-law. The spectral shape of the 3.6% of 0.5--10 keV emission that remains during eclipses is consistent with that during non-dipping intervals.
Collecting experimental insight into the relativistic particle populations and emission mechanisms at work within TeV-emitting blazar jets, which are spatially unresolvable in most bands and have strong beaming factors, is a daunting task. New observ ational information has the potential to lead to major strides in understanding the acceleration site parameters. Detection of molecular carbon monoxide (CO) in TeV emitting blazars, however, implies the existence of intrinsic gas, a connection often found in photo-dissociated region models and numerical simulations. The existence of intrinsic gas within a blazar could provide a target photon field for Compton up-scattering of photons to TeV energies by relativistic particles. We investigate the possible existence of intrinsic gas within the three TeV emitting blazars RGB J0710+591, W Comae and 1ES 1959+650 which have measurements or upper limits on molecular CO line luminosity using an independent technique which is based on the spectral analysis of soft X-rays. Evidence for X-ray absorption by additional gas beyond that measured within the Milky Way is searched for in Swift X-ray Telescope (XRT) data between 0.3 and 10 keV. Without complementary information from another measurement, additional absorption could be misinterpreted as an intrinsically curved X-ray spectrum since both models can frequently fit the soft X-ray data. After breaking this degeneracy, we do not find evidence for intrinsically curved spectra for any of the three blazars. Moreover, no evidence for intrinsic gas is evident for RGB J0710+591 and W Comae, while the 1ES 1959+650 XRT data support the existence of intrinsic gas with a column density of $sim1times10^{21}$cm$^{-2}$.
Context. On the basis of XMM-Newton observations, we investigate the energy balance of selected magnetic cataclysmic variables, which have shown an extreme soft-to-hard X-ray flux ratio in the ROSAT All-Sky Survey. Aims. We intend to establish the X-ray properties of the system components, their flux contributions, and the accretion geometry of the X-ray soft polar QS Tel. In the context of high-resolution X-ray analyses of magnetic cataclysmic variables, this study will contribute to better understanding the accretion processes on magnetic white dwarfs. Methods. During an intermediate high state of accretion of QS Tel, we have obtained 20 ks of XMM-Newton data, corresponding to more than two orbital periods, accompanied by simultaneous optical photometry and phase-resolved spectroscopy. We analyze the multi-wavelength spectra and light curves and compare them to former high- and low-state observations. Results. Soft emission at energies below 2 keV dominates the X-ray light curves. The complex double-peaked maxima are disrupted by a sharp dip in the very soft energy range (0.1-0.5 keV), where the count rate abruptly drops to zero. The EPIC spectra are described by a minimally absorbed black body at 20 eV and two partially absorbed MEKAL plasma models with temperatures around 0.2 and 3 keV. The black-body-like component arises from one mainly active, soft X-ray bright accretion region nearly facing the mass donor. Parts of the plasma emission might be attributed to the second, virtually inactive pole. High soft-to-hard X-ray flux ratios and hardness ratios demonstrate that the high-energy emission of QS Tel is substantially dominated by its X-ray soft component.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا