ترغب بنشر مسار تعليمي؟ اضغط هنا

Confronting Hierarchical Clustering Models with Observations of Galaxy Pairs

65   0   0.0 ( 0 )
 نشر من قبل Josefa Perez
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Josefa Perez




اسأل ChatGPT حول البحث

We investigate the star formation activity in galaxy pairs in chemical hydrodynamical simulations consistent with a Lambda-CDM scenario. A statistical analysis of the effects of galaxy interactions on the star formation activity as a function of orbital parameters shows that close encounters (r < 30 kpc/h) can be effectively correlated with an enhancement of star formation activity with respect to galaxies without a close companion. Our results suggest that the stability properties of systems are also relevant in this process. We found that the passive star forming galaxies pairs tend to have deeper potential wells, older stellar populations, and less leftover gas than active star forming ones. In order to assess the effects that projection and interlopers could introduce in observational samples, we have also constructed and analysed projected simulated catalogs of galaxy pairs. In good agreement with observations, our results show a threshold (rp < 25 kpc/h) for interactions to enhance the star formation activity with respect to galaxies without a close companion. Finally, analysing the environmental effect, we detect the expected SFR-local density relation for both pairs and isolated galaxy samples, although the density dependence is stronger for galaxies in pairs suggesting a relevant role for interactions in driving this relation.

قيم البحث

اقرأ أيضاً

The main ingredients of recent semi-analytic models of galaxy formation are summarised. We present predictions for the galaxy clustering properties of a well specified LCDM model whose parameters are constrained by observed local galaxy properties. W e present preliminary predictions for evolution of clustering that can be probed with deep pencil beam surveys.
147 - Aaron A. Dutton 2008
The scaling relations between rotation velocity, size and luminosity form a benchmark test for any theory of disk galaxy formation. We confront recent theoretical models of disk formation to a recent large compilation of such scaling relations. We st ress the importance of achieving a fair comparison between models and observations.
Around 50 PNe are presently known to possess small-scale low-ionization structures (LISs). We consider here jets, jet-like, symmetrical and non-symmetrical LISs and present a detailed comparison of the existing model predictions with the observationa l morphological and kinematical properties. We find that nebulae with LISs appear indistinctly spread among all morphological classes of PNe, indicating that the processes leading to the formation of LISs are not necessarily related to those responsible for the asphericity of the large-scale morphological components of PNe. We show that both the observed velocities and locations of most non-symmetrical LISs can be reasonably well reproduced assuming either fossil condensations originated in the AGB wind or in-situ instabilities. The jet models proposed to date (HD and MHD interacting winds or accretion-disk collimated winds) appear unable to account simultaneously for the kinematical ages and the angle between the jet and the symmetry axes of the nebulae. The linear increase in velocity observed in several jets favors MHD confinement compared to pure HD interacting wind models. On the other hand, we find that the formation of jet-like systems characterized by relatively low expansion velocities cannot be explained by any of the existing models. Finally, the knots which appear in symmetrical and opposite pairs of low velocity could be understood as the survival of fossil (symmetrical) condensations formed during the AGB phase or as structures that have experienced substantial slowing down by the ambient medium.
151 - Fabio Fontanot 2009
[abridged] It has been widely claimed that several lines of observational evidence point towards a downsizing (DS) of the process of galaxy formation over cosmic time. This behavior is sometimes termed anti-hierarchical, and contrasted with the botto m-up assembly of the dark matter structures in Cold Dark Matter models. In this paper we address three different kinds of observational evidence that have been described as DS: the stellar mass assembly, star formation rate and the ages of the stellar populations in local galaxies. We compare a broad compilation of available data-sets with the predictions of three different semi-analytic models of galaxy formation within the Lambda-CDM framework. In the data, we see only weak evidence at best of DS in stellar mass and in star formation rate. We find that, when observational errors on stellar mass and SFR are taken into account, the models acceptably reproduce the evolution of massive galaxies, over the entire redshift range that we consider. However, lower mass galaxies are formed too early in the models and are too passive at late times. Thus, the models do not correctly reproduce the DS trend in stellar mass or the archaeological DS, while they qualitatively reproduce the mass-dependent evolution of the SFR. We demonstrate that these discrepancies are not solely due to a poor treatment of satellite galaxies but are mainly connected to the excessively efficient formation of central galaxies in high-redshift haloes with circular velocities ~100-200 km/s. [abridged]
The recent observations from CMB have imposed a very stringent upper-limit on the tensor/scalar ratio $r$ of inflation models, $r < 0.064$, which indicates that the primordial gravitational waves (PGW), even though possible to be detected, should hav e a power spectrum of a tiny amplitude. However, current experiments on PGW is ambitious to detect such a signal by improving the accuracy to an even higher level. Whatever their results are, it will give us much information about the early Universe, not only from the astrophysical side but also from the theoretical side, such as model building for the early Universe. In this paper, we are interested in analyzing what kind of inflation models can be favored by future observations, starting with a kind of general action offered by the effective field theory (EFT) approach. We show a general form of $r$ that can be reduced to various models, and more importantly, we show how the accuracy of future observations can put constraints on model parameters by plotting the contours in their parameter spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا