ترغب بنشر مسار تعليمي؟ اضغط هنا

Swift-UVOT detection of GRB 050318

123   0   0.0 ( 0 )
 نشر من قبل Martin Still
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Still




اسأل ChatGPT حول البحث

We present observations of GRB 050318 by the Ultra-Violet and Optical Telescope (UVOT) on-board the Swift observatory. The data are the first detections of a Gamma Ray Burst (GRB) afterglow decay by the UVOT instrument, launched specifically to open a new window on these transient sources. We showcase UVOTs ability to provide multi-color photometry and the advantages of combining UVOT data with simultaneous and contemporaneous observations from the high-energy detectors on the Swift spacecraft. Multiple filters covering 1,800-6,000 Angstroms reveal a red source with spectral slope steeper than the simultaneous X-ray continuum. Spectral fits indicate that the UVOT colors are consistent with dust extinction by systems at z = 1.2037 and z = 1.4436, redshifts where absorption systems have been pre-identified. However, the data can be most-easily reproduced with models containing a foreground system of neutral gas redshifted by z = 2.8 +/- 0.3. For both of the above scenarios, spectral and decay slopes are, for the most part, consistent with fireball expansion into a uniform medium, provided a cooling break occurs between the energy ranges of the UVOT and Swifts X-ray instrumentation.



قيم البحث

اقرأ أيضاً

87 - M. Perri , P. Giommi , M. Capalbi 2005
We report the results of Swift X-Ray Telescope (XRT) observations of GRB 050318. This event triggered the Burst Alert Telescope (BAT) aboard Swift and was followed-up with XRT and UVOT for 11 consecutive orbits starting from 54 minutes after the trig ger. A previously unknown fading X-ray source was detected and accurately monitored. The source was found to decrease in intensity with time and a clear temporal break occurring at ~18000 s after the trigger was observed. The X-ray light curve was found to be consistent with a broken power-law with decay indices -1.17 +/- 0.08 and -2.10 (+0.22) (-0.24) before and after the break. The spectrum of the X-ray afterglow was well described by a photoelectrically absorbed power-law with energy index of -1.09 +/-0.09. No evidence of spectral evolution was found. We compare these results with those obtained with UVOT and separately reported and refine the data analysis of BAT. We discuss our results in the framework of a collimated fireball model and a synchrotron radiation emission mechanism. Assuming the GRB redshift derived from the farthest optical absorption complex (z = 1.44), the event is fully consistent with the E_p-E_iso correlation.
We review recent UV observations of core-collapse supernovae (SNe) with the Swift Ultra-violet/Optical Telescope (UVOT) during its first two years. Rest-frame UV photometry is useful for differentiating SN types by exploiting the UV-optical spectral shape and more subtle UV features. This is useful for the real-time classification of local and high-redshift SNe using only photometry. Two remarkable SNe Ib/c were observed with UVOT -- SN2006jc was a UV bright SN Ib. Swift observations of GRB060218/SN2006aj began shortly after the explosion and show a UV-bright peak followed by a UV-faint SN bump. UV observations are also useful for constraining the temperature and ionization structure of SNe IIP. Rest-frame UV observations of all types are important for understanding the extinction, temperature, and bolometric luminosity of SNe and to interpret the observations of high redshift SNe observed at optical wavelengths.
135 - M. Page , V. Yershov , A.Breeveld 2015
We present the first Swift Ultraviolet/Optical Telescope Serendipitous Source Catalogue (UVOTSSC). The catalogue was compiled from 23,059 Swift datasets taken within the first five years of observations with the Swift UVOT. A purpose-built processing pipeline, based around the standard Swift processing tools, was employed. The catalogue contains positions, photometry in three UV and three optical bands, morphological information and data quality flags. In total, the catalogue contains 6,200,016 unique sources of which more than 2 million have multiple observations in the catalogue.
We present ultravioliet (UV) observations of supernovae (SNe) obtained with the UltraViolet/Optical Telescope (UVOT) on board the Swift spacecraft. This is the largest sample of UV light curves from any single instrument and covers all major SN types and most subtypes. The UV light curves of SNe Ia are fairly homogenous while SNe Ib/c and IIP show more variety in their light curve shapes. The UV-optical colors clearly differentiate SNe Ia and IIP, particularly at early times. The color evolution of SNe IIP, however, makes their colors similar to SNe Ia at about 20 days after explosion. SNe Ib/c are shown to have varied UV-optical colors. The use of UV colors to help type SNe will be important for high redshift SNe discovered in optical observations. These data can be added to ground based optical and near infrared data to create bolometric light curves of individual objects and as checks on generic bolometric corrections used in the absence of UV data. This sample can also be compared with rest-frame UV observations of high redshift SNe observed at optical wavelengths.
73 - M. Molina 2020
We introduce the Swift/UVOT+MaNGA (SwiM) value added catalog, which comprises 150 galaxies that have both SDSS/MaNGA integral field spectroscopy and archival Swift/UVOT near-UV (NUV) images. The similar angular resolution between the three Swift/UVOT NUV images and the MaNGA maps allows for a high-resolution comparison of optical and NUV indicators of star formation, crucial for constraining quenching and attenuation in the local universe. The UVOT NUV images, SDSS images, and MaNGA emission line and spectral index maps have all been spatially matched and re-projected to match the point spread function and pixel sampling of the Swift/UVOT uvw2 images, and are presented in the same coordinate system for each galaxy. The spectral index maps use the definition first adopted by Burstein et al. (1984), which makes it more convenient for users to compute spectral indices when binning the maps. Spatial covariance is properly taken into account in propagating the uncertainties. We also provide a catalog that includes PSF-matched aperture photometry in the SDSS optical and Swift NUV bands. In an earlier, companion paper (Molina et al. 2020) we used a subset of these galaxies to explore the attenuation laws of kiloparsec-sized star forming regions. The catalog, maps for each galaxy, and the associated data models, are publicly released on the SDSS website (https://data.sdss.org/sas/dr16/manga/swim/v3.1/).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا