ترغب بنشر مسار تعليمي؟ اضغط هنا

Getting Its Kicks: A VLBA Parallax for the Hyperfast Pulsar B1508+55

298   0   0.0 ( 0 )
 نشر من قبل Shami Chatterjee
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Chatterjee




اسأل ChatGPT حول البحث

The highest velocity neutron stars establish stringent constraints on natal kicks, asymmetries in supernova core collapse, and the evolution of close binary systems. Here we present the first results of a long-term pulsar astrometry program using the VLBA. We measure a proper motion and parallax for the pulsar B1508+55, leading to model-independent estimates of its distance (2.37+0.23-0.20 kpc) and transverse velocity (1083+103-90 km/s), the highest velocity directly measured for a neutron star. We trace the pulsar back from its present Galactic latitude of 52.3 degrees to a birth site in the Galactic plane near the Cyg OB associations, and find that it will inevitably escape the Galaxy. Binary disruption alone is insufficient to impart the required birth velocity, and a natal kick is indicated. A composite scenario including a large kick along with binary disruption can plausibly account for the high velocity.



قيم البحث

اقرأ أيضاً

We report on the simultaneous Giant Metrewave Radio Telescope (GMRT) and Algonquin Radio Observatory (ARO) observations at 550-750 MHz of the scintillation of PSR B1508+55, resulting in a $sim$10,000-km baseline. This regime of measurement lies betwe en the shorter few 100-1000~km baselines of earlier multi-station observations and the much longer earth-space baselines. We measure a scintillation cross-correlation coefficient of $0.22$, offset from zero time lag due to a $sim 45$~s traversal time of the scintillation pattern. The scintillation time of 135~s is $3times$ longer, ruling out isotropic as well as strictly 1D scattering. Hence, the low cross-correlation coefficient is indicative of highly anisotropic but 2D scattering. The common scintillation detected on the baseline is confined to low delays of $lesssim 1 mu$s, suggesting that this correlation may not be associated with the parabolic scintillation arc detected at the GMRT. Detection of pulsed echoes and their direct imaging with the Low Frequency Array (LOFAR) by a different group enable them to measure a distance of 125~pc to the screen causing these echoes. These previous measurements, alongside our observations, lead us to propose that there are at least two scattering screens: the closer 125 pc screen causing the scintillation arc detected at GMRT, and a screen further beyond causing the scintillation detected on the GMRT-ARO baseline. We advance the hypothesis that the 125-pc screen partially resolves the speckle images on the screen beyond leading to loss of coherence in the scintillation dynamic spectrum, to explain the low cross-correlation coefficient.
We show that Majoron emission from a hot nascent neutron star can be anisotropic in the presence of a strong magnetic field. If Majorons carry a non-negligible fraction of the supernova energy, the resulting recoil velocity of a neutron star can explain the observed velocities of pulsars.
142 - J. Nordhaus 2010
The collapse of a massive stars core, followed by a neutrino-driven, asymmetric supernova explosion, can naturally lead to pulsar recoils and neutron star kicks. Here, we present a two-dimensional, radiation-hydrodynamic simulation in which core coll apse leads to significant acceleration of a fully-formed, nascent neutron star (NS) via an induced, neutrino-driven explosion. During the explosion, a ~10% anisotropy in the low-mass, high-velocity ejecta lead to recoil of the high-mass neutron star. At the end of our simulation, the NS has achieved a velocity of ~150 km s$^{-1}$ and is accelerating at ~350 km s$^{-2}$, but has yet to reach the ballistic regime. The recoil is due almost entirely to hydrodynamical processes, with anisotropic neutrino emission contributing less than 2% to the overall kick magnitude. Since the observed distribution of neutron star kick velocities peaks at ~300-400 km s$^{-1}$, recoil due to anisotropic core-collapse supernovae provides a natural, non-exotic mechanism with which to obtain neutron star kicks.
The mechanism responsible for the natal kicks of neutron stars continues to be a challenging problem. Indeed, many mechanisms have been suggested, and one hydrodynamic mechanism may require large initial asymmetries in the cores of supernova progenit or stars. Goldreich, Lai, & Sahrling (1997) suggested that unstable g-modes trapped in the iron (Fe) core by the convective burning layers and excited by the $epsilon$-mechanism may provide the requisite asymmetries. We perform a modal analysis of the last minutes before collapse of published core structures and derive eigenfrequencies and eigenfunctions, including the nonadiabatic effects of growth by nuclear burning and decay by both neutrino and acoustic losses. In general, we find two types of g-modes: inner-core g-modes, which are stabilized by neutrino losses and outer-core g-modes which are trapped near the burning shells and can be unstable. Without exception, we find at least one unstable g-mode for each progenitor in the entire mass range we consider, 11 M$_{sun}$ to 40 M$_{sun}$. More importantly, we find that the timescales for growth and decay are an order of magnitude or more longer than the time until the commencement of core collapse. We conclude that the $epsilon$-mechanism may not have enough time to significantly amplify core g-modes prior to collapse.
PSR B1508+55 is known to have a single component profile above 300 MHz. However, when we study it at frequencies below 100 MHz using the first station of the Long Wavelength Array, it shows multiple components. These include the main pulse, a precurs or, a postcursor, and a trailing component. The separation of the trailing component from the main peak evolves over the course of a three year study. This evolution is likely an effect of the pulse signal getting refracted off an ionized gas cloud (acting as a lens) leading to what appears to be a trailing component in the profile as the pulsar signal traverses the interstellar medium. Using this interpretation, we identify the location and electron density of the lens affecting the pulse profile.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا