ترغب بنشر مسار تعليمي؟ اضغط هنا

SIMBOL-X, a formation flying-mission for hard X-ray astrophysics

63   0   0.0 ( 0 )
 نشر من قبل Philippe Ferrando
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SIMBOL-X is a hard X-ray mission, operating in the ~ 0.5-70 keV range, which is proposed by a consortium of European laboratories in response to the 2004 call for ideas of CNES for a scientific mission to be flown on a formation flying demonstrator. Relying on two spacecrafts in a formation flying configuration, SIMBOL-X uses for the first time a ~ 30 m focal length X-ray mirror to focus X-rays with energy above 10 keV, resulting in a two orders of magnitude improvement in angular resolution and sensitivity in the hard X-ray range with respect to non focusing techniques. The SIMBOL-X revolutionary instrumental capabilities will allow to elucidate outstanding questions in high energy astrophysics, related in particular to the physics of accretion onto compact objects, to the acceleration of particles to the highest energies, and to the nature of the Cosmic X-Ray background. The mission, which has gone through a thorough assessment study performed by CNES, is expected to start a competitive phase A in autumn 2005, leading to a flight decision at the end of 2006, for a launch in 2012. The mission science objectives, the current status of the instrumentation and mission design, as well as potential trade-offs are presented in this paper.

قيم البحث

اقرأ أيضاً

103 - P. Ferrando 2003
SIMBOL-X is a hard X-ray mission, operating in the 0.5-70 keV range, which is proposed by a consortium of European laboratories for a launch around 2010. Relying on two spacecraft in a formation flying configuration, SIMBOL-X uses a 30 m focal length X-ray mirror to achieve an unprecedented angular resolution (30 arcsec HEW) and sensitivity (100 times better than INTEGRAL below 50 keV) in the hard X-ray range. SIMBOL-X will allow to elucidate fundamental questions in high energy astrophysics, such as the physics of accretion onto Black Holes, of acceleration in quasar jets and in supernovae remnants, or the nature of the hard X-ray diffuse emission. The scientific objectives and the baseline concepts of the mission and hardware design are presented.
Simbol-X will push grazing incidence imaging up to 80 keV, providing a strong improvement both in sensitivity and angular resolution compared to all instruments that have operated so far above 10 keV. The superb hard X-ray imaging capability will be guaranteed by a mirror module of 100 electroformed Nickel shells with a multilayer reflecting coating. Here we will describe the technogical development and solutions adopted for the fabrication of the mirror module, that must guarantee an Half Energy Width (HEW) better than 20 arcsec from 0.5 up to 30 keV and a goal of 40 arcsec at 60 keV. During the phase A, terminated at the end of 2008, we have developed three engineering models with two, two and three shells, respectively. The most critical aspects in the development of the Simbol-X mirrors are i) the production of the 100 mandrels with very good surface quality within the timeline of the mission; ii) the replication of shells that must be very thin (a factor of 2 thinner than those of XMM-Newton) and still have very good image quality up to 80 keV; iii) the development of an integration process that allows us to integrate these very thin mirrors maintaining their intrinsic good image quality. The Phase A study has shown that we can fabricate the mandrels with the needed quality and that we have developed a valid integration process. The shells that we have produced so far have a quite good image quality, e.g. HEW <~30 arcsec at 30 keV, and effective area. However, we still need to make some improvements to reach the requirements. We will briefly present these results and discuss the possible improvements that we will investigate during phase B.
The realization of X-ray telescopes with imaging capabilities in the hard (> 10 keV) X-ray band requires the adoption of optics with shallow (< 0.25 deg) grazing angles to enhance the reflectivity of reflective coatings. On the other hand, to obtain large collecting area, large mirror diameters (< 350 mm) are necessary. This implies that mirrors with focal lengths >10 m shall be produced and tested. Full-illumination tests of such mirrors are usually performed with on- ground X-ray facilities, aimed at measuring their effective area and the angular resolution; however, they in general suffer from effects of the finite distance of the X-ray source, e.g. a loss of effective area for double reflection. These effects increase with the focal length of the mirror under test; hence a partial full-illumination measurement might not be fully representative of the in-flight performances. Indeed, a pencil beam test can be adopted to overcome this shortcoming, because a sector at a time is exposed to the X-ray flux, and the compensation of the beam divergence is achieved by tilting the optic. In this work we present the result of a hard X-ray test campaign performed at the BL20B2 beamline of the SPring-8 synchrotron radiation facility, aimed at characterizing the Point Spread Function (PSF) of a multilayer-coated Wolter-I mirror shell manufactured by Nickel electroforming. The mirror shell is a demonstrator for the NHXM hard X-ray imaging telescope (0.3 - 80 keV), with a predicted HEW (Half Energy Width) close to 20 arcsec. We show some reconstructed PSFs at monochromatic X-ray energies of 15 to 63 keV, and compare them with the PSFs computed from post-campaign metrology data, self-consistently treating profile and roughness data by means of a method based on the Fresnel diffraction theory. The modeling matches the measured PSFs accurately.
The Virtual Telescope for X-Ray Observations (VTXO) is an Astrophysics SmallSat mission being developed to demonstrate 10-milliarcsecond X-ray imaging using a Phase Fresnel Lense (PFL) based space telescope. PFLs promise to provide several orders of magnitude improvement in angular resolution over current state of the art X-ray optics. However, PFLs for astronomical applications require a long focal length, for VTXO the focal length is estimated to be in the range of 0.5 km to 4 km. Since these focal lengths are not feasible on a single spacecraft, the proposed solution is to use two separate spacecraft, one with the lense(s), and the second with an X-ray camera. These two spacecrafts will then fly in a formation approximating a single rigid telescope. In order to achieve this configuration, the two spacecraft must maintain the formation a focal length distance apart, with centimeter level control, and sub-millimeter level knowledge requirements. Additionally, the system must keep the telescope axis pointed at a fixed target on the celestial sphere for extended durations. VTXOs system architecture calls for two CubeSats to operate in a highly eccentric Earth orbit with one of the spacecrafts traveling on a natural keplarian orbit. The second spacecraft will then fly on a pseudo orbit maintaining a fixed offset during observations. Observations with this system will occur near apogee where differential forces on the spacecrafts are minimal which in turn minimizes fuel consumption. This paper overviews VTXOs system architecture, and looks in depth at the formation flying techniques, including fuel consumption, and methods maintaining the formation. Beyond its use in X-ray astronomy, these formations flying techniques should eventually contribute to the development of distributed aperture telescopes, with imaging performance orders of magnitude better than the current state of the art.
109 - M. Friis , M. Kiss , V. Mikhalev 2018
The PoGO mission, including the PoGOLite Pathfinder and PoGO+, aims to provide polarimetric measurements of the Crab system and Cygnus X-1 in the hard X-ray band. Measurements are conducted from a stabilized balloon-borne platform, launched on a 1 mi llion cubic meter balloon from the Esrange Space Center in Sweden to an altitude of approximately 40 km. Several flights have been conducted, resulting in two independent measurements of the Crab polarization and one of Cygnus X-1. Here, a review of the PoGO mission is presented, including a description of the payload and the flight campaigns, and a discussion of some of the scientific results obtained to date.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا