ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of Active Galactic Nuclei with Ground-Based Cherenkov Telescopes

81   0   0.0 ( 0 )
 نشر من قبل Dr. Henric Krawczynski
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Imaging Atmospheric Cherenkov Telescopes (IACTs) allow us to observe Active Galactic Nuclei (AGNs) in the 100 GeV to 20 TeV energy range with high sensitivity. The TeV gamma-ray observations of the nine blazars detected so far in this energy range reveal rapid flux and spectral variability on time scales of several hours, sometimes even on time scales of a few minutes. While simple synchrotron-Compton models can explain the observed non-thermal emission, alternative models which involve high-energy protons are not yet ruled out. After reviewing the status of the major IACT experiments, we describe some recent observational results and their astrophysical implications. We conclude with a discussion of possible avenues for future research.



قيم البحث

اقرأ أيضاً

Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited a stronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the variability properties of the sources, as compared to strategies that concentrate the observing time in a small number of large observing windows. Although derived using CTA as an example, our conclusions are conceptually valid for any IACTs facility, and in general, to all observatories with small field of view and limited duty cycle.
A TeV scale electroweak particle is a well motivated candidate for the dark matter (DM) of our Universe. Yet such a particle may only be detectable using indirect detection instruments sensitive to TeV-scale gamma rays that can result from dark matte r annihilations. We present a mock analysis of the sensitivity for the present ground-based Cherenkov telescope array H.E.S.S. (High Energy Spectroscopic System) to detect TeV scale DM in the Galactic Center region. The work combines next-to-leading-logarithmic order calculations for the annihilation photon spectrum, as well as a comprehensive treatment of detector effects and expected backgrounds. Forecast limits on the sensitivity of H.E.S.S. have been derived across the important TeV mass range, assuming different DM density profiles and focusing on the canonical WIMP dark matter candidate Wino.These limits test our present and future ability to probe the predicted thermal cross section for some of the most promising DM candidates that could be discovered in the coming decade.
In November 1999 we carried out VLBI observations of several quasars and BL Lacertae objects at 1.66 GHz. Six antennas participated in the experiment (Bear Lakes, Svetloe, Pushchino, Noto, HartRAO, and Seshan). The results for six sources (0420+022, 0420-014, 1308+326, 1345+125, 1803+784, and DA193) are presented and discussed.
Over the past few decades, our knowledge of jets produced by active galactic nuclei (AGN) has greatly progressed thanks to the development of very-long-baseline interferometry (VLBI). Nevertheless, the crucial mechanisms involved in the formation of the plasma flow, as well as those driving its exceptional radiative output up to TeV energies, remain to be clarified. Most likely, these physical processes take place at short separations from the supermassive black hole, on scales which are inaccessible to VLBI observations at centimeter wavelengths. Due to their high synchrotron opacity, the dense and highly magnetized regions in the vicinity of the central engine can only be penetrated when observing at shorter wavelengths, in the millimeter and sub-millimeter regimes. While this was recognized already in the early days of VLBI, it was not until the very recent years that sensitive VLBI imaging at high frequencies has become possible. Ongoing technical development and wide band observing now provide adequate imaging fidelity to carry out more detailed analyses. In this article we overview some open questions concerning the physics of AGN jets, and we discuss the impact of mm-VLBI studies. Among the rich set of results produced so far in this frequency regime, we particularly focus on studies performed at 43 GHz (7 mm) and at 86 GHz (3 mm). Some of the first findings at 230 GHz (1 mm) obtained with the Event Horizon Telescope are also presented.
This letter presents a revised radiative transfer model for the infrared (IR) emission of active galactic nuclei (AGN). While current models assume that the IR is emitted from a dusty torus in the equatorial plane of the AGN, spatially resolved obser vations indicate that the majority of the IR emission from 100 pc in many AGN originates from the polar region, contradicting classical torus models. The new model CAT3D-WIND builds upon the suggestion that the dusty gas around the AGN consists of an inflowing disk and an outflowing wind. Here, it is demonstrated that (1) such disk+wind models cover overall a similar parameter range of observed spectral features in the IR as classical clumpy torus models, e.g. the silicate feature strengths and mid-IR spectral slopes, (2) they reproduce the 3-5{mu}m bump observed in many type 1 AGN unlike torus models, and (3) they are able to explain polar emission features seen in IR interferometry, even for type 1 AGN at relatively low inclination, as demonstrated for NGC3783. These characteristics make it possible to reconcile radiative transfer models with observations and provide further evidence of a two-component parsec-scaled dusty medium around AGN: the disk gives rise to the 3-5{mu}m near-IR component, while the wind produces the mid-IR emission. The model SEDs will be made available for download.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا