ترغب بنشر مسار تعليمي؟ اضغط هنا

SparsePak Observations of Diffuse Ionized Gas Halo Kinematics in NGC 891

318   0   0.0 ( 0 )
 نشر من قبل George Heald
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. H. Heald




اسأل ChatGPT حول البحث

We present WIYN SparsePak observations of the diffuse ionized gas (DIG) halo of NGC 891. Preliminary results of an analysis of the halo velocity field reveal a clear gradient of the azimuthal velocity with z which agrees with results for the neutral gas. The magnitude of the gradient has been determined, using two independent methods, to be approximately 15 km/s/kpc.

قيم البحث

اقرأ أيضاً

We present infrared spectroscopy from the Spitzer Space Telescope at one disk position and two positions at a height of 1 kpc from the disk in the edge-on spiral NGC 891, with the primary goal of studying halo ionization. Our main result is that the [Ne III]/[Ne II] ratio, which provides a measure of the hardness of the ionizing spectrum free from the major problems plaguing optical line ratios, is enhanced in the extraplanar pointings relative to the disk pointing. Using a 2D Monte Carlo-based photo-ionization code which accounts for the effects of radiation field hardening, we find that this trend cannot be reproduced by any plausible photo-ionization model, and that a secondary source of ionization must therefore operate in gaseous halos. We also present the first spectroscopic detections of extraplanar PAH features in an external normal galaxy. If they are in an exponential layer, very rough emission scale-heights of 330-530 pc are implied for the various features. Extinction may be non-negligible in the midplane and reduce these scale-heights significantly. There is little significant variation in the relative emission from the various features between disk and extraplanar environment. Only the 17.4 micron feature is significantly enhanced in the extraplanar gas compared to the other features, possibly indicating a preference for larger PAHs in the halo.
The observed scale heights of extraplanar diffuse ionized gas (eDIG) layers exceed their thermal scale heights by a factor of a few in the Milky Way and other nearby edge-on disk galaxies. Here, we test a dynamical equilibrium model of the extraplana r diffuse ionized gas layer in NGC 891, where we ask whether the thermal, turbulent, magnetic field, and cosmic ray pressure gradients are sufficient to support the layer. In optical emission line spectroscopy from the SparsePak integral field unit on the WIYN 3.5-meter telescope, the H-alpha emission in position-velocity space suggests that the eDIG is found in a ring between galactocentric radii of R_min <= R <= 8 kpc, where R_min >= 2 kpc. We find that the thermal (sigma_th = 11 km/s) and turbulent (sigma_turb = 25 km/s) velocity dispersions are insufficient to satisfy the hydrostatic equilibrium equation given an exponential electron scale height of h_z = 1.0 kpc. Using a literature analysis of radio continuum observations from the CHANG-ES survey, we demonstrate that the magnetic field and cosmic ray pressure gradients are sufficient to stably support the gas at R >= 8 kpc if the cosmic rays are sufficiently coupled to the system (gamma_cr = 1.45). Thus, a stable dynamical equilibrium model is viable only if the extraplanar diffuse ionized gas is found in a thin ring around R = 8 kpc, and non-equilibrium models such as a galactic fountain flow are of interest for further study.
Galaxies are surrounded by halos of hot gas whose mass and origin remain unknown. One of the most challenging properties to measure is the metallicity, which constrains both of these. We present a measurement of the metallicity around NGC 891, a near by, edge-on, Milky Way analog. We find that the hot gas is dominated by low metallicity gas near the virial temperature at $kT=0.20pm0.01$ keV and $Z/Z_{odot} = 0.14pm0.03$(stat)$^{+0.08}_{-0.02}$(sys), and that this gas co-exists with hotter ($kT=0.71pm0.04$ keV) gas that is concentrated near the star-forming regions in the disk. Model choices lead to differences of $Delta Z/Z_{odot} sim 0.05$, and higher $S/N$ observations would be limited by systematic error and plasma emission model or abundance ratio choices. The low metallicity gas is consistent with the inner part of an extended halo accreted from the intergalactic medium, which has been modulated by star formation. However, there is much more cold gas than hot gas around NGC 891, which is difficult to explain in either the accretion or supernova-driven outflow scenarios. We also find a diffuse nonthermal excess centered on the galactic center and extending to 5 kpc above the disk with a 0.3-10 keV $L_X = 3.1times 10^{39}$ erg s$^{-1}$. This emission is inconsistent with inverse Compton scattering or single-population synchrotron emission, and its origin remains unclear.
The structure and kinematics of gaseous, disk-halo interfaces are imprinted with the processes that transfer mass, metals, and energy between galactic disks and their environments. We study the extraplanar diffuse ionized gas (eDIG) layer in the inte racting, star-forming galaxy NGC 5775 to better understand the consequences of star-formation feedback on the dynamical state of the thick-disk interstellar medium (ISM). Combining emission-line spectroscopy from the Robert Stobie Spectrograph on the Southern African Large Telescope with radio continuum observations from Continuum Halos in Nearby Galaxies - an EVLA Survey, we ask whether thermal, turbulent, magnetic field, and cosmic-ray pressure gradients can stably support the eDIG layer in dynamical equilibrium. This model fails to reproduce the observed exponential electron scale heights of the eDIG thick disk and halo on the northeast ($h_{z,e} = 0.6, 7.5$ kpc) and southwest ($h_{z,e} = 0.8, 3.6$ kpc) sides of the galaxy at $R < 11$ kpc. We report the first definitive detection of an increasing eDIG velocity dispersion as a function of height above the disk. Blueshifted gas along the minor axis at large distances from the midplane hints at a disk-halo circulation and/or ram pressure effects caused by the ongoing interaction with NGC 5774. This work motivates further integral field unit and/or Fabry-Perot spectroscopy of galaxies with a range of star-formation rates to develop a spatially-resolved understanding of the role of star-formation feedback in shaping the kinematics of the disk-halo interface.
We present deep WIYN H_alpha SparsePak and DensePak spatially-resolved optical spectroscopy of the dwarf irregular starburst galaxy NGC 1140. The different spatial resolutions and coverage of the two sets of observations have allowed us to investigat e the properties and kinematics of the warm ionized gas within both the central regions of the galaxy and the inner halo. We find that the position angle of the H_alpha rotation axis for the main body of the galaxy is consistent with the HI rotation axis at PA = 39 deg, but that the ionized gas in the central 20x20 arcsecs (~2x2 kpc) is kinematically decoupled from the rest of the system, and rotates at a PA approximately perpendicular to that of the main body of the galaxy at +40 deg. We find no evidence of coherent large-scale galactic outflows. Instead multiple narrow emission line components seen within a radius of ~1-1.5 kpc, and high [SII]/H_alpha ratios found beyond ~2 kpc implying a strong contribution from shocks, suggest that the intense star formation is driving material outwards from the main star forming zone in the form of a series of interacting superbubbles/shells. A broad component (100<FWHM<230 km/s) to the H_alpha line is identified throughout galaxy disk out to >2 kpc. Based on recent work, we conclude that it is produced in turbulent mixing layers on the surfaces of cool gas knots embedded within the ISM, set up by the feedback from young massive star clusters. Our data suggest a physical limit to the radius where the broad emission line component is significant, and we propose that this limit marks a significant transition point in the development of the galactic outflow, where turbulent motion becomes less dominant. This mirrors what has recently been found in another similar irregular starburst galaxy NGC 1569.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا