ﻻ يوجد ملخص باللغة العربية
The Mars Odyssey spacecraft carries two experiments which are capable of detecting cosmic gamma-ray bursts and soft gamma repeaters. Since April 2001 they have detected over 275 bursts and, in conjunction with the other spacecraft of the interplanetary network, localized many of them rapidly and precisely enough to allow sensitive multi-wavelength counterpart searches. We present the Mars Odyssey mission and describe the burst capabilities of the two experiments in detail. We explain how the spacecraft timing and ephemeris have been verified in-flight using bursts from objects whose precise positions are known by other means. Finally, we show several examples of localizations and discuss future plans for the Odyssey mission and the network as a whole.
The Los Alamos National Laboratory designed and built Mars Odyssey Neutron Spectrometer (MONS) has been in excellent health operating from February 2002 to the present. MONS measures the neutron leakage albedo from galactic cosmic ray bombardment of
The study of nonstationary processes in the Sun is of great interest, and lately, multiwavelength observations and registration of magnetic fields are carried out by means of both ground-based telescopes and several specialized spacecraft (SC) on nea
The FREGATE experiment aboard HETE-II has been successfully integrated into the Third Interplanetary Network (IPN) of gamma-ray burst detectors. We show how HETEs timing has been verified in flight, and discuss what HETE can do for the IPN and vice-versa.
We present a demonstration of near real-time spacecraft astrometry with the VLBA. We detect the X-band downlink signal from Mars Reconnaissance Orbiter and Odyssey with the VLBA and transmit the data over the internet for correlation at the VLBA corr
The problem of minimum-time, low-thrust, Earth-to-Mars interplanetary orbital trajectory optimization is considered. The minimum-time orbital transfer problem is modeled as a four-phase optimal control problem where the four phases correspond to plan