ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of deuterated water in a young proto-planetary disk

180   0   0.0 ( 0 )
 نشر من قبل Cecilia Ceccarelli dr
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first detection of the ground transition of the deuterated water at 464 GHz in the young proto-planetary disk surrounding the solar type protostar DM Tau. The line is observed in absorption against the continuum from the cold dust in the disk midplane, with a line to continuum ratio close to unity. The observation implies that deuterated gaseous water is present, with a relatively large abundance ($sim 3times10^{-9}$), in the outer disk above the midplane, where the density is, within a factor ten, $sim 10^6$ cm$^{-3}$ and the temperature is lower than about 25 K. In these conditions, the H$_2$O condensation timescale is much smaller than the DM Tau disk age, and, therefore, water should be fully frozen onto the grain mantles. We suggest that UV photons and/or X-rays sublimate part of the mantles re-injecting the ices into the gas phase. Even though there is currently no measurement of H$_2$O, we provide arguments that the HDO/H$_2$O ratio should be about 0.01 or larger, which would be hundreds of times larger than the values measured in Solar System objects. This suggests the need of strong caution in comparing and linking the HDO/H$_2$O in Solar System and star forming environments.

قيم البحث

اقرأ أيضاً

Probing the gas and dust in proto-planetary disks is central for understanding the process of planet formation. In disks surrounding solar type protostars, the bulk of the disk mass resides in the outer midplane, which is cold ($leq$20 K), dense ($ge q 10^7$ cm$^{-3}$) and depleted of CO. Observing the disk midplane has proved, therefore, to be a formidable challenge. Ceccarelli et al. (2004) detected H$_2$D$^+$ emission in a proto-planetary disk and claimed that it probes the midplane gas. Indeed, since all heavy-elements bearing molecules condense out onto the grain mantles, the most abundant ions in the disk midplane are predicted to be H$_3^+$ and its isotopomers. In this article, we carry out a theoretical study of the chemical structure of the outer midplane of proto-planetary disks. Using a self-consistent physical model for the flaring disk structure, we compute the abundances of H$_3^+$ and its deuterated forms across the disk midplane. We also provide the average column densities across the disk of H$_3^+$, H$_2$D$^+$, HD$_2^+$ and D$_3^+$, and line intensities of the ground transitions of the ortho and para forms of H$_2$D$^+$ and HD$_2^+$ respectively. We discuss how the results depend on the cosmic ray ionization rate, dust-to-gas ratio and average grain radius, and general stellar/disk parameters. An important factor is the poorly understood freeze-out of N$_2$ molecules onto grains, which we investigate in depth. We finally summarize the diagnostic values of observations of the H$_3^+$ isotopomers.
98 - M. C. Schutte 2020
We report the discovery of the youngest brown dwarf with a disk at 102 pc from the Sun, WISEA~J120037.79-784508.3 (W1200-7845), via the Disk Detective citizen science project. We establish that W1200-7845 is located in the 3.7$substack{+4.6 -1.4}$ M yr-old $varepsilon$~Cha association. Its spectral energy distribution (SED) exhibits clear evidence of an infrared (IR) excess, indicative of the presence of a warm circumstellar disk. Modeling this warm disk, we find the data are best fit using a power-law description with a slope $alpha = -0.94$, which suggests it is a young, Class II type disk. Using a single blackbody disk fit, we find $T_{eff, disk} = 521 K$ and $L_{IR}/L_{*} = 0.14$. The near-infrared spectrum of W1200-7845 matches a spectral type of M6.0$gamma pm 0.5$, which corresponds to a low surface gravity object, and lacks distinctive signatures of strong Pa$beta$ or Br$gamma$ accretion. Both our SED fitting and spectral analysis indicate the source is cool ($T_{eff} = $2784-2850 K), with a mass of 42-58 $M_{Jup}$, well within the brown dwarf regime. The proximity of this young brown dwarf disk makes the system an ideal benchmark for investigating the formation and early evolution of brown dwarfs.
102 - T. K. Suzuki 2008
By performing local three-dimensional MHD simulations of stratified accretion disks, we investigate disk winds driven by MHD turbulence. Initially given weak vertical magnetic fields are effectively amplified by magnetorotational instability and wind ing due to differential rotation. Large scale channel flows develop most effectively at 1.5 - 2 times the scale heights where the magnetic pressure is comparable to but slightly smaller than the gas pressure. The breakup of these channel flows drives structured disk winds by transporting the Poynting flux to the gas. These features are universally observed in the simulations of various initial fields. This disk wind process should play an essential role in the dynamical evaporation of proto-planetary disks. The breakup of channel flows also excites the momentum fluxes associated with Alfvenic and (magneto-)sonic waves toward the mid-plane, which possibly contribute to the sedimentation of small dust grains in protoplanetary disks.
Recent sub-millimetric observations at the Plateau de Bure interferometer evidenced a cavity at ~ 46 AU in radius into the proto-planetary disk around the T Tauri star LkCa15 (V1079 Tau), located in the Taurus molecular cloud. Additional Spitzer obse rvations have corroborated this result possibly explained by the presence of a massive (>= 5 MJup) planetary mass, a brown dwarf or a low mass star companion at about 30 AU from the star. We used the most recent developments of high angular resolution and high contrast imaging to search directly for the existence of this putative companion, and to bring new constraints on its physical and orbital properties. The NACO adaptive optics instrument at VLT was used to observe LkCa15 using a four quadrant phase mask coronagraph to access small angular separations at relatively high contrast. A reference star at the same parallactic angle was carefully observed to optimize the quasi-static speckles subtraction (limiting our sensitivity at less than 1.0). Although we do not report any positive detection of a faint companion that would be responsible for the observed gap in LkCa15s disk (25-30 AU), our detection limits start constraining its probable mass, semi-major axis and eccentricity. Using evolutionary model predictions, Monte Carlo simulations exclude the presence of low eccentric companions with masses M >= 6 M Jup and orbiting at a >= 100 AU with significant level of confidence. For closer orbits, brown dwarf companions can be rejected with a detection probability of 90% down to 80 AU (at 80% down to 60 AU). Our detection limits do not access the star environment close enough to fully exclude the presence of a brown dwarf or a massive planet within the disk inner activity (i.e at less than 30 AU). Only, further and higher contrast observations should unveil the existence of this putative companion inside the LkCa15 disk.
We present ALMA observations of the largest protoplanetary disk in the Orion Nebula, 114-426. Detectable 345 GHz (856 micron) dust continuum is produced only in the 350 AU central region of the ~1000 AU diameter silhouette seen against the bright H-a lpha background in HST images. Assuming optically thin dust emission at 345 GHz, a gas-to-dust ratio of 100, and a grain temperature of 20 K, the disk gas-mass is estimated to be 3.1 +/- 0.6 Jupiter masses. If most solids and ices have have been incorporated into large grains, however, this value is a lower limit. The disk is not detected in dense-gas tracers such as HCO+ J=4-3, HCN J=4-3, or CS =7-6. These results may indicate that the 114-426 disk is evolved and depleted in some light organic compounds found in molecular clouds. The CO J=3-2 line is seen in absorption against the bright 50 to 80 K background of the Orion A molecular cloud over the full spatial extent and a little beyond the dust continuum emission. The CO absorption reaches a depth of 27 K below the background CO emission at VLSR ~6.7 km/s about 0.52 arcseconds (210 AU) northeast and 12 K below the background CO emission at VLSR ~ 9.7 km/s about 0.34 arcseconds (140 AU) southwest of the suspected location of the central star, implying that the embedded star has a mass less than 1 Solar mass .
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا