ترغب بنشر مسار تعليمي؟ اضغط هنا

The Radiative Transport of Dust in Primordial Galaxies and Second-Generation Star Formation

32   0   0.0 ( 0 )
 نشر من قبل Aparna Venkatesan
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Aparna Venkatesan




اسأل ChatGPT حول البحث

We investigate the radiative transport of dust in primordial galaxies in the presence of the UV radiation field from the first metal-free stars. We find that dust created in the first supernova (SN) explosions can be driven through the interior of the SN remnant to accumulate in the SN shells, where second-generation stars may form from compressed cooling gas. This scenario requires metal-free stars to form continuously over timescales of up to 10 Myr, consistent with recent estimates. Silicate and graphite grains, as well as iron-bearing magnetites, are transported to the shells for reasonable parameter assumptions, but their relative yields from primordial SNe is an important factor in the resulting abundance ratios. We compare the results of segregated grain transport with the current nucleosynthetic data on extremely metal-poor Galactic halo stars. Fossil signatures of this process may already have been detected in those iron-poor stars with enhanced carbon and silicate elements such as magnesium, silicon and oxygen. We discuss the implications of our results for the transition from first- to second-generation star formation in primordial galaxies, and the role played by the radiative transport of dust in this process.

قيم البحث

اقرأ أيضاً

121 - Michiel Reuland 2004
We present the results of an observing program with the SCUBA bolometer array to measure the submillimetre (submm) dust continuum emission of 24 distant (z > 1) radio galaxies. We detected submm emission in 12 galaxies with S/N > 3, including 9 detec tions at z > 3. When added to previous published results these data almost triple the number of radio galaxies with z > 3 detected in the submm and yield a sample of 69 observed radio galaxies over the redshift range z = 1-5. We find that the range in rest-frame far-infrared luminosities is about a factor of 10. We have investigated the origin of this dispersion, correlating the luminosities with radio source power, size, spectral index, K-band magnitude and Lya luminosity. No strong correlations are apparent in the combined data set. We confirm and strengthen the result from previous submm observations of radio galaxies that the detection rate is a strong function of redshift. We compare the redshift dependence of the submm properties of radio galaxies with those of quasars and find that for both classes of objects the observed submm flux density increases with redshift to z ~ 4, beyond which, for the galaxies, we find tentative evidence for a decline. We find evidence for an anti-correlation between submm luminosity and UV polarisation fraction, for a subsample of 13 radio galaxies, indicating that starbursts are the dominant source of heating for dust in radio galaxies.
We have used the Spitzer Space Telescope to study the dust properties of a sample of star-forming dwarf galaxies. The differences in the mid-infrared spectral energy distributions for these galaxies which, in general, are low metallicity systems, ind icate differences in the physical properties, heating, and/or distribution of the dust. Specifically, these galaxies have more hot dust and/or very small grains and less PAH emission than either spiral or higher luminosity starburst galaxies. As has been shown in previous studies, there is a gradual decrease in PAH emission as a function of metallicity. Because much of the energy from star formation in galaxies is re-radiated in the mid-infrared, star-formation rate indicators based on both line and continuum measurements in this wavelength range are coming into more common usage. We show that the variations in the interstellar medium properties of galaxies in our sample, as measured in the mid-infrared, result in over an order of magnitude spread in the computed star-formation rates.
We aim to characterize the relationship between dust properties. We also aim to provide equations to estimate accurate dust properties from limited observational datasets. We assemble a sample of 1,630 nearby (z<0.1) galaxies-over a large range of Mstar, SFR - with multi-wavelength observations available from wise, iras, planck and/or SCUBA. The characterization of dust emission comes from SED fitting using Draine & Li dust models, which we parametrize using two components (warm and cold ). The subsample of these galaxies with global measurements of CO and/or HI are used to explore the molecular and/or atomic gas content of the galaxies. The total Lir, Mdust and dust temperature of the cold component (Tc) form a plane that we refer to as the dust plane. A galaxys sSFR drives its position on the dust plane: starburst galaxies show higher Lir, Mdust and Tc compared to Main Sequence and passive galaxies. Starburst galaxies also show higher specific Mdust (Mdust/Mstar) and specific Mgas (Mgas/Mstar). The Mdust is more closely correlated with the total Mgas (atomic plus molecular) than with the individual components. Our multi wavelength data allows us to define several equations to estimate Lir, Mdust and Tc from one or two monochromatic luminosities in the infrared and/or sub-millimeter. We estimate the dust mass and infrared luminosity from a single monochromatic luminosity within the R-J tail of the dust emission, with errors of 0.12 and 0.20dex, respectively. These errors are reduced to 0.05 and 0.10 dex, respectively, if the Tc is used. The Mdust is correlated with the total Mism (Mism propto Mdust^0.7). For galaxies with Mstar 8.5<log(Mstar/Msun) < 11.9, the conversion factor alpha_850mum shows a large scatter (rms=0.29dex). The SF mode of a galaxy shows a correlation with both the Mgass and Mdust: high Mdust/Mstar galaxies are gas-rich and show the highest SFRs.
We use cosmological simulations to assess how the explosion of the first stars in supernovae (SNe) influences early cosmic history. Specifically, we investigate the impact by SNe on the host systems for Population~III (Pop~III) star formation and exp lore its dependence on halo environment and Pop~III progenitor mass. We then trace the evolution of the enriched gas until conditions are met to trigger second-generation star formation. To this extent, we quantify the recovery timescale, which measures the time delay between a Pop~III SN explosion and the appearance of cold, dense gas, out of which second-generation stars can form. We find that this timescale is highly sensitive to the Pop~III progenitor mass, and less so to the halo environment. For more massive progenitors, including those exploding in pair instability SNe, second-generation star formation is delayed significantly, for up to a Hubble time. The dependence of the recovery time on the mass of the SN progenitor is mainly due to the ionizing impact of the progenitor star. Photoionization heating increases the gas pressure and initiates a hydrodynamical response that reduces the central gas density, an effect that is stronger in more massive. The gas around lower mass Pop~III stars remains denser and hence the SN remnants cool more rapidly, facilitating the subsequent re-condensation of the gas and formation of a second generation of stars. In most cases, the second-generation stars are already metal-enriched to ~2-5 X 10^{-4}zsun, thus belonging to Population~II. The recovery timescale is a key quantity governing the nature of the first galaxies, able to host low-mass, long-lived stellar systems. These in turn are the target of future deep-field campaigns with the James Webb Space Telescope.
63 - C.L. Carilli 2009
When, and how, did the first galaxies and supermassive black holes (SMBH) form, and how did they reionization the Universe? First galaxy formation and cosmic reionization are among the last frontiers in studies of cosmic structure formation. We delin eate the detailed astrophysical probes of early galaxy and SMBH formation afforded by observations at centimeter through submillimeter wavelengths. These observations include studies of the molecular gas (= the fuel for star formation in galaxies), atomic fine structure lines (= the dominant ISM gas coolant), thermal dust continuum emission (= an ideal star formation rate estimator), and radio continuum emission from star formation and relativistic jets. High resolution spectroscopic imaging can be used to study galaxy dynamics and star formation on sub-kpc scales. These cm and mm observations are the necessary compliment to near-IR observations, which probe the stars and ionized gas, and X-ray observations, which reveal the AGN. Together, a suite of revolutionary observatories planned for the next decade from centimeter to X-ray wavelengths will provide the requisite panchromatic view of the complex processes involved in the formation of the first generation of galaxies and SMBHs, and cosmic reionization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا