ﻻ يوجد ملخص باللغة العربية
XMM-Newton observed the soft gamma repeater SGR 1806-20 about two months after its 2004 December 27 giant flare. A comparison with the previous observations taken with the same instrument in 2003-2004 shows that the pulsed fraction and the spin-down rate have significantly decreased and that the spectrum slightly softened. These changes may indicate a global reconfiguration of the neutron star magnetosphere. The spectral analysis confirms that the presence of a blackbody component in addition to the power-law is required. Since this additional component is consistent with being constant with respect to the earlier observations, we explore the possibility of describing the long-term spectral evolution as only due to the power-law variations. In this case, the slope of the power-law does not significantly change and the spectral softening following the giant flare is caused by the increase of the relative contribution of the blackbody over the power-law component.
We report on the study of 14 XMM-Newton observations of the magnetar SGR 1806-20 spread over a period of 8 years, starting in 2003 and extending to 2011. We find that in mid 2005, a year and a half after a giant flare (GF), the torques on the star in
The 2004 Dec. 27 giant Gamma-ray flare detected from the magnetar SGR 1806-20 created an expanding radio nebula which we have monitored with the Australia Telescope Compact Array and the Very Large Array. These data indicate that there was an increas
On Dec 27, 2004, the magnetar SGR 1806-20 underwent an enormous outburst resulting in the formation of an expanding, moving, and fading radio source. We report observations of this radio source with the Multi-Element Radio-Linked Interferometer Netwo
We report the analysis of 5 NuSTAR observations of SGR 1806-20 spread over a year from April 2015 to April 2016, more than 11 years following its Giant Flare (GF) of 2004. The source spin frequency during the NuSTAR observations follows a linear tren
We discuss the high enegry afterglow emission (including high energy photons, neutrinos and cosmic rays) following the 2004 December 27 Giant Flare from SGR 1806-20. If the initial outflow is relativistic with a bulk Lorentz factor Gamma_0sim {rm ten