ترغب بنشر مسار تعليمي؟ اضغط هنا

GALEX Observations of an Energetic Ultraviolet Flare on the dM4e Star GJ 3685A

95   0   0.0 ( 0 )
 نشر من قبل Jonathan Wheatley
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Galaxy Evolution Explorer (GALEX) satellite has obtained high time resolution ultraviolet photometry during a large flare on the M4 dwarf star GJ 3685A. Simultaneous NUV (1750 - 2800A) and FUV (1350 - 1750A) time-tagged photometry with time resolution better than 0.1 s shows that the overall brightness in the FUV band increased by a factor of 1000 in 200 s. Under the assumption that the NUV emission is mostly due to a stellar continuum, and that the FUV flux is shared equally between emission lines and continuum, then there is evidence for two distinct flare components for this event. The first flare type is characterized by an exponential increase in flux with little or no increase in temperature. The other involves rapid increases in both temperature and flux. While the decay time for the first flare component may be several hours, the second flare event decayed over less than 1 minute, suggesting that there was little or no confinement of the heated plasma.

قيم البحث

اقرأ أيضاً

As part of the Mega MUSCLES Hubble Space Telescope (HST) Treasury program, we obtained time-series ultraviolet spectroscopy of the M2.5V star, GJ~674. During the FUV monitoring observations, the target exhibited several small flares and one large fla re (E_FUV = 10^{30.75} ergs) that persisted over the entirety of a HST orbit and had an equivalent duration >30,000 sec, comparable to the highest relative amplitude event previously recorded in the FUV. The flare spectrum exhibited enhanced line emission from chromospheric, transition region, and coronal transitions and a blue FUV continuum with an unprecedented color temperature of T_c ~ 40,000+/-10,000 K. In this paper, we compare the flare FUV continuum emission with parameterizations of radiative hydrodynamic model atmospheres of M star flares. We find that the observed flare continuum can be reproduced using flare models but only with the ad hoc addition of hot, dense emitting component. This observation demonstrates that flares with hot FUV continuum temperatures and significant EUV/FUV energy deposition will continue to be of importance to exoplanet atmospheric chemistry and heating even as the host M dwarfs age beyond their most active evolutionary phases.
We present near ultraviolet (NUV:1750 - 2800AA) and far ultraviolet (FUV: 1350 - 1750AA) light-curves for flares on 4 nearby dMe-type stars (GJ 3685A, CR Dra, AF Psc and SDSS J084425.9+513830.5) observed with the GALEX satellite. Taking advantage of the time-tagged events recorded with the GALEX photon counting detectors, we present high temporal resolution (<0.01 sec) analysis of these UV flare data. A statistical analysis of 700 seconds of pre-flare quiescence data for both CR Dra and SDSS J084425.9+513830.5 failed to reveal the presence of significant micro-flare activity in time bins of 0.2, 1 and 10 second intervals. Using an appropriate differential emission measure for both the quiescent and flaring state, it is possible to reproduce the observed FUV:NUV flux ratios. A major determinant in reproducing this flux ratio is found to be the value of plasma electron density during the flare. We also searched the count rate data recorded during each of the four flare events for periodicity associated with magneto-hydrodynamic oscillations in the active region coronal loops. Significant oscillations were detected during the flare events observed on all 4 stars, with periodicities found in the 30 to 40 second range. Flare oscillations with this periodicity can be explained as acoustic waves in a coronal loop of length of $approx 10^{9}$ cm for an assumed plasma temperature of $5-20 times 10^{6}$K. This suggests a loop length for these M-dwarf flares of less than $1/10^{th}$ of the stellar radii. We believe that this is the first detection of non-solar coronal loop flare oscillations observed at ultraviolet wavelengths.
We present a comprehensive study of the active dM4e star GJ 1243. We use previous observations and ground-based echelle spectroscopy to determine that GJ 1243 is a member of the Argus association of field stars, suggesting it is $sim 30-50$ Myr old. We analyze eleven months of 1-minute cadence data from Kepler, presenting Kepler flare frequency distributions, as well as determining correlations between flare energy, amplitude, duration, and decay time. We find that the exponent $alpha$ of the power-law flare energy distribution varies in time, primarily due to completeness of sample and the low frequency of high-energy flares. We also find a deviation from a single power law at high energy. We use ground-based spectroscopic observations simultaneous with the Kepler data to provide simultaneous photometric and spectroscopic analysis of three low-energy flares, the lowest-energy dMe flares with detailed spectral analysis to date on any star. The spectroscopic data from these flares extend constraints for radiative hydrodynamic (RHD) flare models to a lower energy regime than has previously been studied. We use this simultaneous spectroscopy and Kepler photometry to develop approximate
MQ Dra is a strongly magnetic Cataclysmic Variable whose white dwarf accretes material from its secondary star through a stellar wind at a low rate. TESS observations were made of MQ Dra in four sectors in Cycle 2 and show a short duration, high ener gy flare (~10^35 erg) which has a profile characteristic of a flare from the M5V secondary star. This is one of the few occasions where an energetic flare has been seen from a Polar. We find no evidence that the flare caused a change in the light curve following the event and consider whether a coronal mass ejection was associated with the flare. We compare the frequency of energetic flares from the secondary star in MQ Dra with M dwarf stars and discuss the overall flare rate of stars with rotation periods shorter than 0.2 d and how such fast rotators can generate magnetic fields with low differential rotation rates.
We present GALEX near ultraviolet (NUV:1750 - 2750A) and far ultraviolet (FUV: 1350 - 1750A) imaging observations of two 1.2 degree diameter fields in the Hyades and Pleiades open clusters in order to detect possible UV variability of the member star s. We have performed a detailed software search for short-term UV flux variability during these observations of the approx 400 sources detected in each of the Hyades and Pleiades fields to identify flare-like (dMe) stellar objects. This search resulted in the detection of 16 UV variable sources, of which 13 can be directly associated with probable M-type stars. The other UV sources are G-type stars and one newly discovered RR Lyrae star, USNOB1.0 1069-0046050, of period 0.624 day and distance 4.5-7.0 kpc. Light curves of photon flux versus time are shown for 7 flare events recorded on six probable dMe stars. UV energies for these flares span the range 2E27 to 5E29 erg, with a corresponding NUV variability change of 1.82 mag. Only one of these flare events (on the star Cl* Melotte 25 LH129) can definitely be associated with an origin on a member the Hyades cluster itself. Finally, many of our M-type candidates show long periods of enhanced UV activity but without the associated rapid increase in flux that is normally associated with a flare event. However, the total UV energy output during such periods of increased activity is greater than that of many short-term UV flares. These intervals of enhanced low-level UV activity concur with the idea that, even in quiescence, the UV emission from dMe stars may be related to a superposition of many small flare events possessing a wide range of energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا