ترغب بنشر مسار تعليمي؟ اضغط هنا

The nature of the red disk-like galaxies at high redshift: dust attenuation and intrinsically red stellar populations

56   0   0.0 ( 0 )
 نشر من قبل Daniele Pierini
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Pierini




اسأل ChatGPT حول البحث

We investigate which conditions of dust attenuation and stellar populations allow models of dusty, continuously star-forming, bulge-less disk galaxies at 0.8<z<3.2 to meet the different colour selection criteria of high-z ``red galaxies (e.g. Rc-K>5.3, Ic-K>4, J-K>2.3). As a main novelty, we use stellar population models that include the thermally pulsating Asymptotic Giant Branch (TP-AGB) phase of stellar evolution. The star formation rate of the models declines exponentially as a function of time, the e-folding time being longer than 3 Gyr. In addition, we use calculations of radiative transfer of the stellar and scattered radiation through different dusty interstellar media in order to explore the wide parameter space of dust attenuation. We find that synthetic disks can exhibit red optical/near-infrared colours because of reddening by dust, but only if they have been forming stars for at least about 1 Gyr. Extremely few models barely exhibit Rc-K>5.3, if the inclination i=90 deg and if the opacity 2*tauV>6. Hence, Rc-K-selected galaxies at 1<z<2 most probably are either systems with an old, passively evolving bulge or starbursts. Synthetic disks at 1<z<2 exhibit 4<Ic-K<4.8, if they are seen edge on (i.e. at i about 90 deg) and if 2*tauV>0.5. This explains the large fraction of observed, edge-on disk-like galaxies with Ks<19.5 and F814W-Ks>4. Finally, models with 2<z<3.2 exhibit 2.3<J-K<3, with no bias towards i about 90 deg and for a large range in opacity (e.g. 2*tauV>1 for i about 70 deg). In conclusion, red disk-like galaxies at 0.8<z<3.2 may not necessarily be dustier than nearby disk galaxies (with 0.5<2*tauV<2) and/or much older than about 1 Gyr. This result is due both to a realistic description of dust attenuation and to the emission contribution by TP-AGB stars... (Abridged)

قيم البحث

اقرأ أيضاً

We re-address the classification criterion for extremely red galaxies (ERGs) of Pozzetti and Mannucci (2000 -- PM00), which aims to separate, in the Ic-K (or Rc-K) vs. J-K colour--colour diagram, passively evolving, old (> 1 Gyr) stellar populations in a dust-free environment, associated with ellipticals (Es), from dusty starburst galaxies (DSGs), both at 1 < z < 2. We explore a category of objects not considered previously, i.e., galaxies forming in this redshift range on short (0.1 Gyr) timescales and observed also in their early, dusty post-starburst phase. We also investigate the impact of structure of the dusty medium and dust amount on the observed optical/near-IR colours of high-z DSGs/DPSGs, through multiple-scattering radiative transfer calculations for a dust/stars configuration and an extinction function calibrated with nearby dusty starbursts. As a main result, we find that dusty post-starburst galaxies (DPSGs), with ages between 0.2 and 1 Gyr, at 1.3 < z < 2 mix with Es at 1 < z < 2 for a large range in dust amount. This ``intrusion is a source of concern for the present two-colour classification of ERGs. On the other hand, we confirm, in agreement with PM00, that DSGs are well separated from Es, both at 1 < z < 2, in the Ic-K vs. J-K colour--colour diagram, whatever the structure (two-phase clumpy or homogeneous) of their dusty medium and their dust amount are. This result holds under the new hypothesis of high-z Es being as dusty as nearby ones. Thus the interpretation of the optical/near-IR colours of high-z Es may suffer from a multiple degeneracy among age, metallicity, dust and redshift. We also find that DPSGs at z around 1 mix with DSGs at 1 < z < 2, as a function of dust amount and structure of the dusty medium. All these results help explaining the complexity of the ERG classification... (Abridged)
91 - Casey Papovich 2005
We investigate the properties of massive galaxies at z=1-3.5 using HST observations, ground-based near-IR imaging, and Spitzer Space Telescope observations at 3-24 micron. We identify 153 distant red galaxies (DRGs) with J-K > 2.3 mag (Vega) in the s outhern GOODS field. This sample is approximately complete in stellar mass for passively evolving galaxies above 10^11 solar masses and z < 3. The galaxies identified by this selection are roughly split between objects whose optical and near-IR rest-frame light is dominated by evolved stars combined with ongoing star formation, and galaxies whose light is dominated by heavily reddened starbursts. Very few of the galaxies (< 10%) have no indication of current star formation. Using SFR estimates that include the reradiated IR emission, the DRGs at z=1.5-3 with stellar masses > 10^11 solar masses have specific SFRs (SFRs per unit stellar mass) ranging from 0.2 to 10 Gyr^-1, with a mean value of ~2.4 Gyr^-1. The DRGs with stellar masses > 10^11 solar masses and 1.5 < z < 3 have integrated specific SFRs greater the global value over all galaxies. In contrast, we find that galaxies at z = 0.3-0.75 with these stellar masses have integrated specific SFRs less than the global value, and more than an order of magnitude lower than that for massive DRGs at z = 1.5-3. At z < 1, lower-mass galaxies dominate the overall cosmic mass assembly. This suggests that the bulk of star formation in massive galaxies occurs at early cosmic epochs and is largely complete by z~1.5. [Abridged]
We use high-resolution ($approx 10$ pc), zoom-in simulations of a typical (stellar mass $M_starsimeq10^{10}M_odot$) Lyman Break Galaxy (LBG) at $zsimeq 6$ to investigate the stellar populations of its six dwarf galaxy satellites, whose stellar [gas] masses are in the range $log (M_star/M_odot) simeq 6-9$ [$log (M_{gas}/M_odot) simeq4.3-7.75$]. The properties and evolution of satellites show no dependence on the distance from the central massive LBG ($< 11.5$ kpc). Instead, their star formation and chemical enrichment histories are tightly connected their stellar (and sub-halo) mass. High-mass dwarf galaxies ($rm M_star gtrsim 5times 10^8 M_odot$) experience a long history of star formation, characterised by many merger events. Lower-mass systems go through a series of short star formation episodes, with no signs of mergers; their star formation activity starts relatively late ($zapprox 7$), and it is rapidly quenched by internal stellar feedback. In spite of the different evolutionary patterns, all satellites show a spherical morphology, with ancient and more metal-poor stars located towards the inner regions. All six dwarf satellites experienced high star formation rate ($rm >5,M_odot yr ^{-1}$) bursts, which can be detected by JWST while targeting high-$z$ LBGs.
We recently identified a substantial population of galaxies at z>2 with red rest-frame optical colors. These distant red galaxies (DRGs) are efficiently selected by the simple observed color criterion J-K>2.3. In this paper we present NIR spectroscop y with Keck/NIRSPEC of six DRGs at 2.4<z<3.2. We detect continuum emission and emission lines of all observed galaxies. Equivalent widths of H alpha are 20-30 Ang, smaller than measured for LBGs and nearby LIRGs, and comparable to normal nearby galaxies. The modest equivalent widths imply that the galaxies either have a decreasing star formation rate, or that they are very dusty. Fitting both the photometry and the H alpha lines, we find continuum extinction A_V=1-2 mag, ages 1-2.5 Gyr, star formation rates 200-400 solar masses/yr, and stellar masses 1-5x10^11 solar masses for models with constant star formation rates. From [NII]/H alpha ratios we infer that the metallicities are high, 1-1.5 x Solar. For four galaxies we can determine line widths from the optical emission lines. The widths are high, ranging from 130-240 km/s, and by combining data for LBGs and DRGs we find significant correlations between linewidth and restframe U-V color, and between linewidth and stellar mass. The latter correlation has a similar slope and offset as the ``baryonic Tully-Fisher relation for nearby galaxies. The median dynamical mass is ~2x10^11 solar masses, supporting the high stellar masses inferred from the photometry. We find that the median M/L_V ~ 0.8, a factor of ~5 higher than measured for LBGs. We infer from our small sample that DRGs are dustier, more metal rich, more massive, and have higher ages than z=3 LBGs of the same rest-frame V-band luminosity. Their high M/L ratios imply that they contribute significantly to the stellar mass density at z~2.5. [ABRIDGED]
A diverse range of dust attenuation laws is found in star-forming galaxies. In particular, Tress et al. (2018) studied the SHARDS survey to constrain the NUV bump strength (B) and the total-to selective ratio (Rv) of 1,753 star-forming galaxies in th e GOODS-N field at 1.5<z<3. We revisit here this sample to assess the implications and possible causes of the correlation found between Rv and B. The UVJ bicolour plot and main sequence of star formation are scrutinised to look for clues into the observed trend. The standard boundary between quiescent and star-forming galaxies is preserved when taking into account the wide range of attenuation parameters. However, an additional degeneracy, regarding the effective attenuation law, is added to the standard loci of star-forming galaxies in the UVJ diagram. A simple phenomenological model with an age-dependent extinction (at fixed dust composition) is compatible with the observed trend between Rv and B, whereby the opacity decreases with the age of the populations, resulting in a weaker NUV bump when the overall attenuation is shallower (greyer). In addition, we compare the constraints obtained by the SHARDS sample with dust models from the literature, supporting a scenario where geometry could potentially drive the correlation between Rv and B
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا