ﻻ يوجد ملخص باللغة العربية
We present the angular power spectrum of the CMB component extracted with FastICA from the Background Emission Anisotropy Scanning Telescope (BEAST) data. BEAST is a 2.2 meter off-axis telescope with a focal plane comprising 8 elements at Q (38-45 GHz) and Ka (26-36 GHz) bands. It operates from the UC White Mountain Research Station at an altitude of 3800 meters. The BEAST CMB angular power spectrum has been already calculated by ODwyer et.al. using only the Q band data. With two input channels FastICA returns two possible independent components. We found that one of these two has an unphysical spectral behaviour while the other is a reasonable CMB component. After a detailed calibration procedure based on Monte-Carlo (MC) simulations we extracted the angular power spectrum for the identified CMB component and found a very good agreement with the already published BEAST CMB angular power spectrum and with the WMAP data.
The Background Emission Anisotropy Scanning Telescope (BEAST) is a 2.2m off-axis telescope with an 8 element mixed Q (38-45GHz) and Ka (26-36GHz) band focal plane, designed for balloon borne and ground based studies of the Cosmic Microwave Background
We compute the angular power spectrum C_l from 1.5 million galaxies in early SDSS data on large angular scales, l<600. The data set covers about 160 square degrees, with a characteristic depth of order 1 Gpc/h in the faintest (21<r<22) of our four ma
We describe and implement an exact, flexible, and computationally efficient algorithm for joint component separation and CMB power spectrum estimation, building on a Gibbs sampling framework. Two essential new features are 1) conditional sampling of
We present a new analytical method to calculate the small angle CMB temperature angular power spectrum due to cosmic (super-)string segments. In particular, using our method, we clarify the dependence on the intercommuting probability $P$. We find th
In this paper, we present results from the complete set of cosmic microwave background (CMB) radiation temperature anisotropy observations made with the Arcminute Cosmology Bolometer Array Receiver (ACBAR) operating at 150 GHz. We include new data fr