ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Ionization Emission in Metal-Deficient Blue Compact Dwarf Galaxies

118   0   0.0 ( 0 )
 نشر من قبل Yuri Izotov I.
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Primordial stars are expected to be very massive and hot, producing copious amounts of hard ionizing radiation. The best place to study hard ionizing radiation in the local universe is in very metal-deficient Blue Compact Dwarf (BCD) galaxies. We have carried out a MMT spectroscopic search for [Ne V] 3426 (ionization potential of 7.1 Ryd), [Fe V] 4227 (ionization potential of 4 Ryd) and He II 4686 (ionization potential of 4 Ryd) emission in a sample of 18 BCDs. We have added data from previous work and from the Data Release 3 of the Sloan Digital Sky Survey. In total, we have assembled a BCD high-ionization sample with [Ne V] emission in 4 galaxies, [Fe V] emission in 15 galaxies and He II emission in 465 galaxies. With this large sample, we have reached the following conclusions. There is a general trend of higher [Ne V], [Fe V] and He II emission at lower metallicities. However metallicity is not the only factor which controls the hardness of the radiation. High-mass X-ray binaries and main-sequence stars are probably excluded as the main sources of the very hard ionizing radiation responsible for [Ne V] emission. The most likely source of [Ne V] emission is probably fast radiative shocks moving with velocities > 450 km/s through a dense interstellar medium with an electron number density of several hundreds per cm^-3 and associated with supernova explosions of the most massive stars. These have masses of ~ 50 - 100 Msun and are formed in very compact super-star clusters. The softer ionizing radiation required for He II emission is likely associated with less massive evolved stars and/or radiative shocks moving through a less dense interstellar medium.

قيم البحث

اقرأ أيضاً

104 - T. X. Thuan 2016
We have obtained new HI observations with the 100m Green Bank Telescope (GBT) for a sample of 29 extremely metal-deficient star-forming Blue Compact Dwarf (BCD) galaxies, selected from the Sloan Digital Sky Survey spectral data base to be extremely m etal-deficient (12+logO/H<7.6). Neutral hydrogen was detected in 28 galaxies, a 97% detection rate. Combining the HI data with SDSS optical spectra for the BCD sample and adding complementary galaxy samples from the literature to extend the metallicity and mass ranges, we have studied how the HI content of a galaxy varies with various global galaxian properties. There is a clear trend of increasing gas mass fraction with decreasing metallicity, mass and luminosity. We obtain the relation M(HI)/L(g)~L(g)^{-0.3}, in agreement with previous studies based on samples with a smaller luminosity range. The median gas mass fraction f(gas) for the GBT sample is equal to 0.94 while the mean gas mass fraction is 0.90+/-0.15, with a lower limit of ~0.65. The HI depletion time is independent of metallicity, with a large scatter around the median value of 3.4 Gyr. The ratio of the baryonic mass to the dynamical mass of the metal-deficient BCDs varies from 0.05 to 0.80, with a median value of ~0.2. About 65% of the BCDs in our sample have an effective yield larger than the true yield, implying that the neutral gas envelope in BCDs is more metal-deficient by a factor of 1.5-20, as compared to the ionized gas.
We present photometric and spectroscopic observations of two luminous blue variable (LBV) stars in two extremely metal-deficient blue compact dwarf (BCD) galaxies, DDO 68 with 12+logO/H = 7.15 and PHL 293B with 12+logO/H = 7.72. These two BCDs are th e lowest-metallicity galaxies where LBV stars have been detected, allowing to study the LBV phenomenon in the extremely low metallicity regime, and shedding light of the evolution of the first generation of massive stars born from primordial gas. We find that the strong outburst of the LBV star in DDO 68 occurred sometime between February 2007 and January 2008. We have compared the properties of the broad line emission in low-metallicity LBVs with those in higher metallicity LBVs. We find that, for the LBV star in DDO 68, broad emission with a P Cygni profile is seen in both H and He I emission lines. On the other hand, for the LBV star in PHL 293B, P Cygni profiles are detected only in H lines. For both LBVs, no heavy element emission line such as Fe II was detected. The Halpha luminosities of LBV stars in both galaxies are comparable to the one obtained for the LBV star in NGC 2363 (Mrk 71) which has a higher metallicity 12+logO/H = 7.89. On the other hand, the terminal velocities of the stellar winds in both low-metallicity LBVs are high, ~800 km/s, a factor of ~4 higher than the terminal velocities of the winds in high-metallicity LBVs. This suggests that stellar winds at low metallicity are driven by a different mechanism than the one operating in high-metallicity winds.
We present high-quality Keck telescope spectroscopic observations of the two metal-deficient blue compact dwarf (BCD) galaxies Tol 1214-277 and Tol 65. These data are used to derive the heavy-element and helium abundances. We find that the oxygen abu ndances in Tol 1214-277 and Tol 65 are the same, 12+logO/H=7.54+/-0.01, or Zsun/24, despite the different ionization conditions in these galaxies. The nitrogen-to-oxygen abundance ratio in both galaxies is logN/O=-1.64+/-0.02 and lies in the narrow range found for the other most metal-deficient BCDs. We use the five strongest HeI emission lines 3889, 4471, 5876, 6678 and 7065, to correct self-consistently their intensities for collisional and fluorescent enhancement mechanisms and to derive the He abundance. Underlying stellar absorption is found to be important for the HeI 4471 emission line in both galaxies, being larger in Tol 65. The weighted He mass fractions in Tol 1214-277 and Tol 65 are respectively Y=0.2458+/-0.0039 and 0.2410+/-0.0050 when the three HeI emission lines, 4471, 5876 and 6678, are used, and are, respectively, 0.2466+/-0.0043 and 0.2463+/-0.0057 when the HeI 4471 emission line is excluded. These values are in very good agreement with recent measurements of the He mass fraction in others of the most metal-deficient BCDs by Izotov and coworkers. We find that the combined effect of the systematic uncertainties due to the underlying HeI stellar absorption lines, ionization and temperature structure of the HII region and collisional excitation of the hydrogen emission lines is likely small, not exceeding ~2% (the error is 2sigma). Our results support the validity of the standard big bang model of nucleosynthesis.
63 - Y. I. Izotov 1999
We present high-quality spectroscopic observations of the two most-metal deficient blue compact galaxies known, I Zw 18 and SBS 0335-052 to determine the helium abundance. The underlying stellar absorption strongly influences the observed intensities of He I emission lines in the brightest NW component of I Zw 18, and hence this component should not be used for primordial He abundance determination. The effect of underlying stellar absorption, though present, is much smaller in the SE component. Assuming all systematic uncertainties are negligible, the He mass fraction derived in this component is Y = 0.243+/-0.007. The high signal-to-noise ratio spectrum (> 100 in the continuum) of SBS 0335-052 allows us to measure the helium mass fraction with a precision better than 2% -- 5% in nine different regions along the slit. Assuming all systematic uncertainties are negligible, the weighted mean He mass fraction in SBS 0335-052 is Y = 0.2437+/-0.0014 when the three He I 4471, 5876 and 6678 emission lines are used, and is 0.2463+/-0.0015 when the He I 4471 emission line is excluded. The weighted mean helium mass fraction in the two most metal-deficient BCGs I Zw 18 and SBS 0335-052, Y=0.2462+/-0.0015, after correction for the stellar He production results in a primordial He mass fraction Yp = 0.2452+/-0.0015. The derived Yp leads to a baryon-to-photon ratio of (4.7+/-1.0) 10^{-10}, consistent with the values derived from the primordial D and 7Li abundances, and supporting the standard big bang nucleosynthesis theory. For the most consistent set of primordial D, 4He, and 7Li abundances we derive an equivalent number of light neutrino species 3.0+/-0.3 (95% C.L.).
179 - Philip Kaaret , Joseph Schmitt , 2011
We measured the X-ray fluxes from an optically-selected sample of blue compact dwarf galaxies (BCDs) with metallicities <0.07 and solar distances less than 15 Mpc. Four X-ray point sources were observed in three galaxies, with five galaxies having no detectable X-ray emission. Comparing X-ray luminosity and star formation rate, we find that the total X-ray luminosity of the sample is more than 10 times greater than expected if X-ray luminosity scales with star formation rate according to the relation found for normal-metallicity star-forming galaxies. However, due to the low number of sources detected, one can exclude the hypothesis that the relation of the X-ray binaries to SFR in low-metalicity BCDs is identical to that in normal galaxies only at the 96.6% confidence level. It has recently been proposed that X-ray binaries were an important source of heating and reionization of the intergalactic medium at the epoch of reionization. If BCDs are analogs to unevolved galaxies in the early universe, then enhanced X-ray binary production in BCDs would suggest an enhanced impact of X-ray binaries on the early thermal history of the universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا