ﻻ يوجد ملخص باللغة العربية
The ultraviolet (UV) spectra of 16 blazars (<z> ~1) from the archives of the Hubble Space Telescope Faint Object Spectrograph have been analyzed in order to study in a systematic way the properties oftheir broad UV emission lines. We find that the luminosities of the most prominent and intense lines, Ly_alpha and C IV lambda1549, are similar to those of normal radio-loud quasars at comparable redshifts. However, the equivalent widths of blazar lines are significantly smaller than those of radio-loud quasars. Therefore, while the intrinsic broad line region luminosity of blazars appears to be indistinguishable from that of radio-loud quasars, their continuum must be comparatively higher, most probably due to relativistic beaming. We have combined the UV luminosities of the de-beamed continuum with the emitting gas velocity to derive estimates of the masses of the central supermassive black holes. The size of the broad line region was computed in two ways: 1) via an empirical relationship between UV continuum luminosity and broad line region size, and 2) through the external photon density required by blazar models to reproduce the inverse Compton components observed at gamma-rays. The second method yields significantly different results from the first method, suggesting that it provides only a very rough estimate or a lower limit on the size of the broad line region. We find that the average mass of the central black holes in blazars is ~2.8e8 Msun, with a large dispersion, comparable to those computed for other radio-loud active galactic nuclei.
We present low-resolution ultraviolet spectra of 14 low redshift (z<0.8) quasars observed with HST/STIS as part of a Snap project to understand the relationship between quasar outflows and luminosity. By design, all observations cover the CIV emissio
Estimating black hole masses of blazars is still a big challenge. Because of the contamination of jets, using the previously suggested size -- continuum luminosity relation can overestimate the broad line region (BLR) size and black hole mass for rad
We present an elemental-abundance analysis, in the near-ultraviolet (NUV) spectral range, for the bright carbon-enhanced metal-poor (CEMP) stars HD196944 (V = 8.40, [Fe/H] = -2.41) and HD201626 (V = 8.16, [Fe/H] = -1.51), based on data acquired with
With six recorded nova outbursts, the prototypical recurrent nova T Pyxidis is the ideal cataclysmic variable system to assess the net change of the white dwarf mass within a nova cycle. Recent estimates of the mass ejected in the 2011 outburst range
As one of the most luminous radio-loud quasars showing intrinsic ultraviolet (UV) and X-ray absorption, 3C 351 provides a laboratory for studying the kinematics and physical conditions of such ionized absorbers. We present an analysis of the intrinsi