ﻻ يوجد ملخص باللغة العربية
We report on the analysis of a short XMM-Newton observation of the reddened Type 1 QSO 2MASS 234449+1221 first identified in the Two Micron All-Sky Survey. The underlying X-ray continuum is found to be typical of a broad-line active galaxy, with photon index Gamma ~ 1.9. Low energy absorption can be modelled by a column N_H ~ 10^22 cm^{-2} of moderately ionised gas or a smaller column of cold gas. Addition of a soft X-ray emission component significantly improves the fit in both cases. With the assumption that the soft X-ray flux represents emission from gas photoionised by the incident X-ray continuum, a comparison of the absorbed and emitted luminosities indicates a covering factor of ~ 8-17%. The unusual opportunity to simultaneously observe and quantify ionised absorption and emission in 2MASS 234449+1221 is due to the relatively large opacity (for a Type 1 AGN) of the absorbing gas, which depresses the normally strong continuum below ~ 1 keV. A comparison of the soft X-ray emission of 2MASS 234449+1221 with that of other Type 1 and Type 2 AGN suggests the existence of an inner turbulent extension to ionised outflows, not detected in current high resolution X-ray spectra.
We present the XMM-Newton and the optical-VLT spectra along with the optical and the near-infrared photometric data of one of the brightest X-ray (F(2-10 keV)~1e-13 erg/s cm^2) extremely red objects (R-K>=5) discovered so far. The source, XBSJ0216-04
Hercules X-1 is one of the best studied highly magnetised neutron star X-ray binaries with a wealth of archival data. We present the discovery of an ionised wind in its X-ray spectrum when the source is in the high state. The wind detection is statis
We present the analysis and results of a 20 ks XMM-Newton observation of RBS1423. X-ray spectral analysis is used to establish a significantly broadened relativistic iron K-alpha line from a highly ionised disk. A QSO at z=2.262 was considered to be
The past decade has seen a large progress in the X-ray investigation of early-type galaxies of the local universe, and first attempts have been made to reach redshifts z>0 for these objects, thanks to the high angular resolution and sensitivity of th
Collecting experimental insight into the relativistic particle populations and emission mechanisms at work within TeV-emitting blazar jets, which are spatially unresolvable in most bands and have strong beaming factors, is a daunting task. New observ