ترغب بنشر مسار تعليمي؟ اضغط هنا

The projection factor of delta Cephei A calibration of the Baade-Wesselink method using the CHARA Array

71   0   0.0 ( 0 )
 نشر من قبل Merand Antoine
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Merand Antoine




اسأل ChatGPT حول البحث

Cepheids play a key role in astronomy as standard candles for measuring intergalactic distances. Their distance is usually inferred from the Period-Luminosity relationship, calibrated using the semi-empirical Baade-Wesselink method. Using this method, the distance is known to a multiplicative factor, called the projection factor. Presently, this factor is computed using numerical models - it has hitherto never been measured directly. Based on our new interferometric measurements obtained with the CHARA Array and the already published parallax, we present a geometrical measurement of the projection factor of a Cepheid, delta Cep. The value we determined, p = 1.27$pm$0.06, confirms the generally adopted value of p = 1.36 within 1.5 sigmas. Our value is in line with recent theoretical predictions of Nardetto et al. (2004).


قيم البحث

اقرأ أيضاً

The projection factor p is the key quantity used in the Baade-Wesselink (BW) method for distance determination; it converts radial velocities into pulsation velocities. Several methods are used to determine p, such as geometrical and hydrodynamical m odels or the inverse BW approach when the distance is known. We analyze new HARPS-N spectra of delta Cep to measure its cycle-averaged atmospheric velocity gradient in order to better constrain the projection factor. We first apply the inverse BW method to derive p directly from observations. The projection factor can be divided into three subconcepts: (1) a geometrical effect (p0); (2) the velocity gradient within the atmosphere (fgrad); and (3) the relative motion of the optical pulsating photosphere with respect to the corresponding mass elements (fo-g). We then measure the fgrad value of delta Cep for the first time. When the HARPS-N mean cross-correlated line-profiles are fitted with a Gaussian profile, the projection factor is pcc-g = 1.239 +/- 0.034(stat) +/- 0.023(syst). When we consider the different amplitudes of the radial velocity curves that are associated with 17 selected spectral lines, we measure projection factors ranging from 1.273 to 1.329. We find a relation between fgrad and the line depth measured when the Cepheid is at minimum radius. This relation is consistent with that obtained from our best hydrodynamical model of delta Cep and with our projection factor decomposition. Using the observational values of p and fgrad found for the 17 spectral lines, we derive a semi-theoretical value of fo-g. We alternatively obtain fo-g = 0.975+/-0.002 or 1.006+/-0.002 assuming models using radiative transfer in plane-parallel or spherically symmetric geometries, respectively. The new HARPS-N observations of delta Cep are consistent with our decomposition of the projection factor.
High-resolution spectroscopy of pulsating stars is a powerful tool to study the dynamical structure of their atmosphere. Lines asymmetry is used to derive the center-of-mass velocity of the star, while a direct measurement of the atmospheric velocity gradient helps determine the projection factor used in the Baade-Wesselink method of distance determination. We aim at deriving the center-of-mass velocity and the projection factor of the beta-Cephei star alpha-Lup. We present HARPS high spectral resolution observations of alpha-Lup. We calculate the first-moment radial velocities and fit the spectral line profiles by a bi-Gaussian to derive line asymmetries. Correlations between the gamma-velocity and the gamma-asymmetry (defined as the average values of the radial velocity and line asymmetry curves respectively) are used to derive the center-of-mass velocity of the star. By combining our spectroscopic determination of the atmospheric velocity gradient with a hydrodynamical modelof the photosphere of the star, we derive a semi-theoretical projection factor for alpha Lup. We find a center-of-mass velocity of Vgamma = 7.9 +/- 0.6 km/s and that the velocity gradient in the atmosphere of alpha Lup isnull. We apply to alpha Lup the usual decomposition of the projection factor into three parts, p = p0 fgrad fog (originally developed for Cepheids), and derive a projection factor of p = 1.43 +/-0.01. By comparing our results with previous HARPS observations of classical Cepheids, we also point out a linear relation between the atmospheric velocity gradient and the amplitude of the radial velocity curve. Moreover, we observe a phase shift (Van Hoof effect), whereas alpha Lup has no velocity gradient.
Aims. The Baade-Wesselink method of distance determination is based on the oscillations of pulsating stars. The key parameter of this method is the projection factor used to convert the radial velocity into the pulsation velocity. Our analysis was ai med at deriving for the first time the projection factor of delta Scuti stars, using high-resolution spectra of the high-amplitude pulsator AI Vel and of the fast rotator beta Cas. Methods. The geometric component of the projection factor (i.e. p0) was calculated using a limb-darkening model of the intensity distribution for AI Vel, and a fast-rotator model for beta Cas. Then, using SOPHIE/OHP data for beta Cas and HARPS/ESO data for AI Vel, we compared the radial velocity curves of several spectral lines forming at different levels in the atmosphere and derived the velocity gradient associated to the spectral-line-forming regions in the atmosphere of the star. This velocity gradient was used to derive a dynamical projection factor p. Results. We find a flat velocity gradient for both stars and finally p = p0 = 1.44 for AI Vel and p = p0 = 1.41 for beta Cas. By comparing Cepheids and delta Scuti stars, these results bring valuable insights into the dynamical structure of pulsating star atmospheres. They suggest that the period-projection factor relation derived for Cepheids is also applicable to delta Scuti stars pulsating in a dominant radial mode.
Recent progress on Baade-Wesselink (BW)-type techniques to determine the distances to classical Cepheids is reviewed. Particular emphasis is placed on the near-infrared surface-brightness (IRSB) version of the BW method. Its most recent calibration i s described and shown to be capable of yielding individual Cepheid distances accurate to 6%, including systematic uncertainties. Cepheid distances from the IRSB method are compared to those determined from open cluster zero-age main-sequence fitting for Cepheids located in Galactic open clusters, yielding excellent agreement between the IRSB and cluster Cepheid distance scales. Results for the Cepheid period-luminosity (PL) relation in near-infrared and optical bands based on IRSB distances and the question of the universality of the Cepheid PL relation are discussed. Results from other implementations of the BW method are compared to the IRSB distance scale and possible reasons for discrepancies are identified.
We focus on empirically measure the p-factor of a homogeneous sample of 29 LMC and 10 SMC Cepheids for which an accurate average LMC/SMC distance were estimated from eclipsing binary systems. We used the SPIPS algorithm, which is an implementation of the BW method. As opposed to other conventional use, SPIPS combines all observables, i.e. radial velocities, multi-band photometry and interferometry into a consistent physical modeling to estimate the parameters of the stars. The large number and their redundancy insure its robustness and improves the statistical precision. We successfully estimated the p-factor of several MC Cepheids. Combined with our previous Galactic results, we find the following P-p relation: -0.08(log P-1.18)+1.24. We find no evidence of a metallicity dependent p-factor. We also derive a new calibration of the P-R relation, logR=0.684(log P-0.517)+1.489, with an intrinsic dispersion of 0.020. We detect an IR excess for all stars at 3.6 and 4.5um, which might be the signature of circumstellar dust. We measure a mean offset of $Delta m_{3.6}=0.057$mag and $Delta m_{4.5}=0.065$mag. We provide a new P-p relation based on a multi-wavelengths fit, and can be used for the distance scale calibration from the BW method. The dispersion is due to the MCs width we took into account because individual Cepheids distances are unknown. The new P-R relation has a small intrinsic dispersion, i.e. 4.5% in radius. Such precision will allow us to accurately apply the BW method to nearby galaxies. Finally, the IR excesses we detect raise again the issue on using mid-IR wavelengths to derive P-L relation and calibrate the $H_0$. These IR excesses might be the signature of circumstellar dust, and are never taken into account when applying the BW method at those wavelengths. Our measured offsets may give an average bias of 2.8% on the distances derived through mid-IR P-L relations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا