ترغب بنشر مسار تعليمي؟ اضغط هنا

A Strong X-Ray Burst from the Low Mass X-Ray Binary EXO0748-676

83   0   0.0 ( 0 )
 نشر من قبل Dr. Michael T. Wolff
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have observed an unusually strong X-ray burst as a part of our regular eclipse timing observations of the low mass binary system EXO0748-676. The burst peak flux was 5.2x10^-8 ergs cm^-2 s^-1, approximately five times the normal peak X-ray burst flux observed from this source by RXTE. Spectral fits to the data strongly suggest that photospheric radius expansion occurred during the burst. In this Letter we examine the properties of this X-ray burst, which is the first example of a radius expansion burst from EXO0748-676 observed by RXTE. We find no evidence for coherent burst oscillations. Assuming that the peak burst luminosity is the Eddington luminosity for a 1.4 solar mass neutron star we derive a distance to EXO0748-676 of 7.7 kpc for a helium-dominated burst photosphere and 5.9 kpc for a hydrogen-dominated burst photosphere.

قيم البحث

اقرأ أيضاً

We report our complete database of X-ray eclipse timings of the low mass X-ray binary EXO0748-676 observed by the Rossi X-Ray Timing Explorer (RXTE) satellite. As of this writing we have accumulated 443 full X-ray eclipses, 392 of which have been obs erved with the Proportional Counter Array on RXTE. These include both observations where an eclipse was specifically targeted and those eclipses found in the RXTE data archive. Eclipse cycle count has been maintained since the discovery of the EXO0748-676 system in February 1985. We describe our observing and analysis techniques for each eclipse and describe improvements we have made since the last compilation by Wolff et al. (2002). The principal result of this paper is the database containing the timing results from a seven-parameter fit to the X-ray light curve for each observed eclipse along with the associated errors in the fitted parameters. Based on the standard O-C analysis, EXO0748-676 has undergone four distinct orbital period epochs since its discovery. In addition, EXO0748-676 shows small-scale events in the O-C curve that are likely due to short-lived changes in the secondary star.
Orbital period changes are an important diagnostic for understanding low mass X-ray binary (LMXB) accretion-induced angular momentum exchange and overall system evolution. We present our most recent results for the eclipse timing of the LMXB EXO0748- 676. Since its discovery in 1985 it has apparently undergone three distinct orbital period epochs, each characterized by a different orbital period than the previous epoch. We outline the orbital period behavior for EXO0748-676 over the past 18 years and discuss the implications of this behavior in light of current theoretical ideas for LMXB evolution.
We report the detection of pulsations at 552 Hz in the rising phase of two type-I (thermonuclear) X-ray bursts observed from the accreting neutron star EXO 0748-676 in 2007 January and December, by the Rossi X-ray Timing Explorer. The fractional ampl itude was 15% (rms). The dynamic power density spectrum for each burst revealed an increase in frequency of approx. 1-2 Hz while the oscillation was present. The frequency drift, the high significance of the detections and the almost identical signal frequencies measured in two bursts separated by 11 months, confirms this signal as a burst oscillation similar to those found in 13 other sources to date. We thus conclude that the spin frequency in EXO 0748-676 is within a few Hz of 552 Hz, rather than 45 Hz as was suggested from an earlier signal detection by Villarreal & Strohmayer (2004). Consequently, Doppler broadening must significantly affect spectral features arising from the neutron star surface, so that the narrow absorption features previously reported from an XMM-Newton spectrum could not have arisen there. The origin of both the previously reported 45 Hz oscillation and the X-ray absorption lines is now uncertain.
107 - Michael T. Wolff 2007
We report evidence of magnetic activity associated with the secondary star in the EXO 0748-676 low mass X-ray binary system. An analysis of a sequence of five consecutive X-ray eclipses observed during December 2003 with the RXTE satellite brings out a feature occurring during ingress we interpret as the X-ray photoelectric absorption shadow, as seen by an observer at Earth, of a plasma structure suspended above the surface of the secondary star. The light curve feature consists of an initial drop in count rate to near zero (the absorption shadow) with a very short rebound to a significant fraction of the pre-ingress count rate and then a final plunge to totality over a total time scale of ~25 s. The ingress feature persists for at least 5 consecutive orbital periods (a total of ~19 hr), and possibly up to 5 days in our data. Our data also show significant post-egress dipping during this eclipse sequence, unusual for this source, indicating possible secondary star mass ejection during this episode.
We present 7 eclipse timings of the low mass X-ray binary EXO0748-676 obtained with the USA experiment during 1999-2000 as well as 122 eclipse timings obtained with RXTE during 1996-2000. According to our analysis, the mean orbital period has increas ed by ~8 ms between the pre-RXTE era (1985-1990) and the RXTE/USA era (1996-2000). This corresponds to an orbital period derivative of P(orb)/(dP(orb)/dt)~2x10^7 years. However, neither a constant orbital period derivative nor any other simple ephemeris provides an acceptable fit to the data: individual timings of eclipse centers have residuals of up to 15 or more seconds away from our derived smooth ephemerides. When we consider all published eclipse timing data including those presented here, a model that includes observational measurement error, cumulative period jitter, and underlying period evolution is found to be consistent with the timing data. We discuss several physical mechanisms for LMXB orbital evolution in an effort to account for the change in orbital period and the observed intrinsic jitter in the mid-eclipse times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا