ترغب بنشر مسار تعليمي؟ اضغط هنا

FUSE observations of molecular hydrogen on the line of sight towards HD141569A

82   0   0.0 ( 0 )
 نشر من قبل Claire Martin-Za\\\"idi
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Martin-Zaidi




اسأل ChatGPT حول البحث

We present an analysis of the Far Ultraviolet Spectroscopic Explorer (FUSE) spectrum of HD141569A, a transitional object known to possess a circumstellar disk. We observe two components of gas at widely different temperatures along the line of sight. We detect cold H2, which is thermalized up to J=2 at a kinetic temperature of 51K. Such low temperatures are typical of the diffuse interstellar medium. Since the line of sight to HD141569A does not pass through its disk, it appears that we are observing the cold H2 in a low extinction envelope associated with the high Galactic latitude dark cloud complex L134N, which is in the same direction and at nearly the same distance as HD141569A. The column densities of the higher J-levels of H2 suggest the presence of warm gas along the line of sight. The excitation conditions do not seem to be consistent with what is generally observed in diffuse interstellar clouds. The observed radial velocity of the gas implies that the UV spectral lines we observe are likely interstellar in origin rather than circumstellar, although our absorption line study does not definitely rule out the possibility that the warm gas is close to the star. The discovery of such warm gas along the line of sight may provide evidence for turbulent phenomena in the dark cloud L134N.

قيم البحث

اقرأ أيضاً

We describe a moderate-resolution FUSE mini-survey of H2 in the Milky Way and Magellanic Clouds, using four hot stars and four AGN as background sources. FUSE spectra of nearly every stellar and extragalactic source exhibit numerous absorption lines from the H2 Lyman and Werner bands between 912 and 1120 A. One extragalactic sightline, PKS 2155-304, with low N(HI) shows no detectable H2 and could be the Lockman Hole of molecular gas, of importance for QSO absorption-line studies. We measure H2 column densities in low rotational states (J = 0 and 1) to derive rotational and/or kinetic temperatures of diffuse interstellar gas. The higher-J abundances can constrain models of the UV radiation fields and gas densities. In three optically thick clouds toward extragalactic sources, we find n(H) ~ 30-50 cm(-3) and cloud thicknesses of 2-3 pc. The rotational temperatures for H2 at high Galactic latitude, <T_01> = 107 +/- 17 K (seven sightlines) and 120 +/- 13 K (three optically thick clouds), are higher than those in the Copernicus sample composed primarily of targets in the disk. We find no evidence for great differences in the abundance or state of excitation of H2 between sight lines in the Galaxy and those in the SMC and LMC. In the future, we will probe the distribution and physical parameters of diffuse molecular gas in the disk and halo and in the lower-metallicity environs of the LMC and SMC.
We report total abundances and related parameters for the full sample of the FUSE survey of molecular hydrogen in 38 translucent lines of sight. New results are presented for the second half of the survey involving 15 lines of sight to supplement dat a for the first 23 lines of sight already published. We assess the correlations between molecular hydrogen and various extinction parameters in the full sample, which covers a broader range of conditions than the initial sample. In particular, we are now able to confirm that many, but not all, lines of sight with shallow far-UV extinction curves and large values of the total-to-selective extinction ratio, $R_V$ = $A_V$ / $E(B-V)$ -- characteristic of larger than average dust grains -- are associated with particularly low hydrogen molecular fractions ($f_{rm H2}$). In the lines of sight with large $R_V$, there is in fact a wide range in molecular fractions, despite the expectation that the larger grains should lead to less H$_2$ formation. However, we see specific evidence that the molecular fractions in this sub-sample are inversely related to the estimated strength of the UV radiation field and thus the latter factor is more important in this regime. We have provided an update to previous values of the gas-to-dust ratio, $N$(H$_{rm tot}$)/$E(B-V)$, based on direct measurements of $N$(H$_2$) and $N$(H I). Although our value is nearly identical to that found with Copernicus data, it extends the relationship by a factor of 2 in reddening. Finally, as the new lines of sight generally show low to moderate molecular fractions, we still find little evidence for single monolithic translucent clouds with $f_{rm H2}$ $sim$ 1.
Non-line-of-sight (NLOS) imaging is based on capturing the multi-bounce indirect reflections from the hidden objects. Active NLOS imaging systems rely on the capture of the time of flight of light through the scene, and have shown great promise for t he accurate and robust reconstruction of hidden scenes without the need for specialized scene setups and prior assumptions. Despite that existing methods can reconstruct 3D geometries of the hidden scene with excellent depth resolution, accurately recovering object textures and appearance with high lateral resolution remains an challenging problem. In this work, we propose a new problem formulation, called NLOS photography, to specifically address this deficiency. Rather than performing an intermediate estimate of the 3D scene geometry, our method follows a data-driven approach and directly reconstructs 2D images of a NLOS scene that closely resemble the pictures taken with a conventional camera from the location of the relay wall. This formulation largely simplifies the challenging reconstruction problem by bypassing the explicit modeling of 3D geometry, and enables the learning of a deep model with a relatively small training dataset. The results are NLOS reconstructions of unprecedented lateral resolution and image quality.
We present far-ultraviolet spectroscopy of the emission/reflection nebula IC 405 obtained by a rocket-borne long-slit spectrograph and the Far Ultraviolet Spectroscopic Explorer. Both data sets show a rise in the ratio of the nebular surface brightne ss to stellar flux (S/F_*) of approximately two orders of magnitude towards the blue end of the far-UV bandpass. Scattering models using simple dust geometries fail to reproduce the observed S/F_* for realistic grain properties. The high spectral resolution of the FUSE data reveals a rich fluorescent molecular hydrogen spectrum ~1000 north of the star that is clearly distinguished from the steady blue continuum. The S/F_* remains roughly constant at all nebular pointings, showing that fluorescent molecular hydrogen is not the dominant cause for the blue rise. We discuss three possible mechanisms for the ``Blue Dust: differential extinction of the dominant star (HD 34078), unusual dust grain properties, and emission from nebular dust. We conclude that uncertainties in the nebular geometry and the degree of dust clumping are most likely responsible for the blue rise. As an interesting consequence of this result, we consider how IC 405 would appear in a spatially unresolved observation. If IC 405 was observed with a spatial resolution of less than 0.4 pc, for example, an observer would infer a far-UV flux that was 2.5 times the true value, giving the appearance of a stellar continuum that was less extinguished than radiation from the surrounding nebula, an effect that is reminiscent of the observed ultraviolet properties of starburst galaxies.
We present far-ultraviolet observations of IC 63, an emission/reflection nebula illuminated by the B0.5IV star gamma Cassiopeia, located 1.3 pc from the nebula. Molecular hydrogen fluorescence was detected first in IC 63 by IUE and later at shorter w avelengths by ORFEUS. Here we present Far Ultraviolet Spectroscopic Explorer (FUSE) observations towards three locations in the nebula, complemented by Hopkins Ultraviolet Telescope (HUT) data on the central nebular position. In addition, we present a sounding rocket calibration of a FUSE spectrum of gamma Cas. Molecular hydrogen fluorescence is detected in all three FUSE pointings. The intensity of this emission as well as the contributions from other species are seen to vary with position. The absolute flux calibration of the sounding rocket data allows us to reliably predict the radiation field incident on IC 63. We use these data to test models of the fluorescent process. Our modeling resolves the perceived discrepancy between the existing ultraviolet observations and achieves a satisfactory agreement with the H_2 rotational structure observed with FUSE.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا