ﻻ يوجد ملخص باللغة العربية
We present the results of optical spectroscopy of 139 stars obtained with the Hydra multi-object spectrograph. The objects extend over a 1.3 square degree area surrounding the main cloud of the rho Oph complex. The objects were selected from narrowband images to have H alpha in emission. Using the presence of strong H alpha emission, lithium absorption, location in the Hertzsprung-Russell diagram, or previously reported x-ray emission, we were able to identify 88 objects as young stars associated with the cloud. Strong H alpha emission was confirmed in 39 objects with line widths consistent with their origin in magnetospheric accretion columns. Two of the strongest emission-line objects are young, x-ray emitting brown dwarf candidates with M8 spectral types. Comparisons of the bolometric luminosities and effective temperatures with theoretical models suggest a medianage for this population of 2.1 Myr which is signifcantly older than the ages derived for objects in the cloud core. It appears that these stars formed contemporaneously with low mass stars in the Upper Scorpius subgroup, likely triggered by massive stars in the Upper-Centaurus subgroup.
The rho Oph molecular cloud is undergoing intermediate-mass star formation. UV radiation from its hottest young stars heats and dissociates exposed layers, but does not ionize hydrogen. Only faint radiation from the Rayleigh-Jeans tail of ~10-100K du
Molecular oxygen, O2 has been expected historically to be an abundant component of the chemical species in molecular clouds and, as such, an important coolant of the dense interstellar medium. However, a number of attempts from both ground and from s
We present an analysis of low resolution infrared spectra for 20 brown dwarf candidates in the core of the $rho$ Ophiuchi molecular cloud. Fifteen of the sources display absorption-line spectra characteristic of late-type stars. By comparing the dept
Star formation in molecular clouds can be triggered by the dynamical action of winds from massive stars. Furthermore, X-ray and UV fluxes from massive stars can influence the life time of surrounding circumstellar disks. We present the results of a 5
Using Spitzer Space Telescope and Chandra X-ray Observatory data, we identify YSOs in the Rosette Molecular Cloud (RMC). By being able to select cluster members and classify them into YSO types, we are able to track the progression of star formation